Chem. Ber. 107, 3070-3088 (1974)

Kernresonanzspektroskopische Untersuchungen an Borverbindungen, VII¹⁾

¹¹B- und ¹⁴N-Kernresonanzstudien an tetrakoordinierten Bor-Stickstoff-Verbindungen

Heinrich Nöth* und Bernd Wrackmeyer

Institut für Anorganische Chemie der Universität München. D-8000 München 2, Meiserstr. 1

Eingegangen am 10. April 1974

Die chemischen Verschiebungen $\delta^{11}B$ und $\delta^{14}N$ einer großen Zahl von tetrakoordinierten Bor-Stickstoff-Verbindungen werden mitgeteilt und diskutiert. Es besteht eine nahezu lineare Korrelation zwischen den $\delta^{14}N$ - bzw. $\delta^{11}B$ -Werten der R₃B-Addukte (R – H, CH₃) aliphatischer Amine und den $\delta^{13}C$ -Daten der mit diesen Addukten isoelektronischen und isosteren Alkanen. Außerdem geben die $\delta^{14}N$ - und $\delta^{11}B$ -Daten von R₃B-Addukten (R = H, CH₃, C₂H₅) mit N-Heteroaromaten (Azinen, Azolen) Auskunft über ihre Stabilität und Struktur.

Nuclear Magnetic Resonance Studies on Boron Compounds, VII¹⁾ ¹¹B and ¹⁴N N.M.R. Studies on Tetracoordinated Boron Nitrogen Compounds

¹¹B and ¹⁴N chemical shifts for many tetracoordinated boron nitrogen compounds are reported and discussed. There is a nearly linear relationship for δ^{14} N or δ^{11} B of R₃B adducts (R = H, CH₃) of aliphatic amines and δ^{13} C of alkanes isoelectronic and isosteric with these adducts. Furthermore, δ^{14} N and δ^{11} B data of R₃B adducts (R = H, CH₃, C₂H₅) of N-heteroaromatic systems (azines, azoles) give information related to their stability and structure.

¹¹B-Kernresonanzuntersuchungen an Verbindungen des tetrakoordinierten Bors ergaben, daß die ¹¹B-NMR-Signale im Vergleich zu dreifach koordinierten Verbindungen deutlich hochfeldverschoben sind^{2,3)}. Messungen der ¹³C-Kernresonanz an Alkanen, Alkenen und Carbenium-Ionen führten zu analogen Ergebnissen⁴⁾. In beiden Fällen kann man den Abschirmungsgewinn bei erhöhter Koordination und der damit zwangsläufig verbundenen Änderung der Geometrie auf einen kleineren Beitrag des paramagnetischen Terms σ_p zur Gesamtabschirmung zurückführen. Nöth und Vahrenkamp³⁾ sowie Spielvogel und Purser⁵⁾ fanden lineare Beziehungen zwischen δ^{11} B und δ^{13} C von Boranaten³⁾ und Amin-Boranen⁵⁾ einerseits und Alkanen andererseits sowie zwischen den paarweise additiven Parametern⁶⁾ und Substituentenparametern⁷⁾

¹⁾ VI. Mitteil.: H. Nöth, W. Tinhof und B. Wrackmeyer, Chem. Ber. 107, 518 (1974).

²⁾ G. R. Eaton und W. N. Lipscomb, NMR-Studies of Boron Hydrides and Related Compounds, W. A. Benjamin Inc., New York 1968.

³⁾ H. Nöth und H. Vahrenkamp, Chem. Ber. 99, 1049 (1966), vgl. die dort zitierte Literatur.

⁴⁾ G. C. Levy und G. L. Nelson, Carbon 13 NMR for Organic Chemists, J. Wiley Interscience, New York 1972.

⁵⁾ B. F. Spielvogel und J. M. Purser, J. Amer. Chem. Soc. 89, 5294 (1967).

⁶⁾ B. F. Spielvogel und J. M. Purser, J. Amer. Chem. Soc. 93, 4418 (1971).

⁷⁾ B. F. Spielvogel und J. M. Purser, Inorg. Chem. 7, 2156 (1968).

beider Kerne. Derartige lineare Korrelationen bestehen nach unseren Untersuchungen auch zwischen δ^{11} B von Boran-Derivaten BXYZ und δ^{13} C entsprechender Carbenium-Ionen CXYZ^{+8,9}. Es lag daher nahe, die δ^{14} N-Daten von Amin-Boranen und Ammoniumsalzen in vergleichende Betrachtungen mit einzubeziehen.

¹¹B- insbesondere aber ¹⁴N-NMR-Daten von Amin-Boranen sind meist nicht einfach zu interpretieren. Günstiger liegen die Verhältnisse bei Boran-Addukten von N-Heteroaromaten, da sich durch die Anlagerung des Borans die Geometrie am Stickstoff nicht oder nur sehr wenig ändert. So kann man nach *Mooney* und *Quaseem*¹⁰ die δ^{11} B-Werte zur Diskussion relativer Donorstärken von N-Heteroaromaten heranziehen. Umgekehrt kann man aus ¹⁴N-NMR-Daten auf das Akzeptorpotential des verwendeten Borans schließen. Allerdings weichen die von diesen Autoren beobachteten δ^{14} N-Werte von Pyridin-Boranen oft recht erheblich von unseren ab.

Die Protonierung ^{11,12}) und die *N*-Alkylierung ¹³) von Aminen und N-Heterocyclen führt zu einer beträchtlichen Hochfeldverschiebung des ¹⁴N-NMR-Signals. Sie wird vor allem einer Änderung des σ_p -Beitrags zur Abschirmung zugeschrieben ^{14,15}). Umfangreiche Untersuchungen, insbesondere von *Witanowski* et al. an Azinen und Azolen belegen den starken Einfluß dieses Terms auf $\delta^{14}N^{16-21}$. Demzufolge ist für Amin-Boran-Addukte, insbesondere aber für N-Heterocyclen-Boran-Addukte, ebenfalls eine der Stärke der BN-Bindung, d. h. der Ladungsübertragung entsprechende Hochfeldverschiebung des ¹⁴N- und des ¹¹B-NMR-Signals zu erwarten. In dieser sollten sich auch sterische Effekte, die nach *Brown*²² entscheidend die BN-Bindungsstärke beeinflussen, zu erkennen geben. Eine Reihe von ¹¹B-NMR-Messungen an Amin-Boranen steht hiermit im Einklang²).

Amin-Boran-Addukte

Amin-Borane sind leicht aus den Komponenten nach (1) darstellbar. Auf die Gleichgewichtslage nehmen zahlreiche Faktoren Einfluß²³⁾. Die in den Tabb. aufgeführten Addukte wurden nach dieser einfachsten Methode erhalten und NMRspektroskopisch untersucht. Die Tab. 1 enthält die gemessenen chemischen Ver-

$$R_3B + NR_3 \rightleftharpoons R_3B \cdot NR_3 \tag{1}$$

- ¹⁰⁾ E. F. Mooney und M. A. Quaseem, J. Inorg. Nucl. Chem. 30, 1439 (1968).
- 11) J. D. Baldeschwieler und E. W. Randall, Proc. Chem. Soc. (London) 1961, 303.
- 12) M. Witanowski, J. Amer. Chem. Soc. 90, 5683 (1968).
- 13) F. W. Wehrli, W. Giger und W. Simon, Helv. Chim. Acta 54, 229 (1971).
- 14) V. M. S. Gil und J. N. Murrell, Trans. Faraday Soc. 60, 248 (1964).
- ¹⁵⁾ T. K. Wu, J. Chem. Phys. 49, 1139 (1968).
- ¹⁶⁾ M. Witanowski, L. Stefaniak, H. Januszewski und G. A. Webb, Tetrahedron 27, 3129 (1971).
- 17) M. Witanowski und H. Januszewski, Mol. Phys. 23, 1071 (1972).
- 18) M. Witanowski und G. A. Webb, Nitrogen-NMR, Plenum Press, London 1973.
- 19) M. Witanowski, L. Stefaniak, H. Januszewski, J. Grabowski und G. A. Webb, Tetrahedron 28, 637 (1972).
- 20) K. Hensen und K. P. Messer, Chem. Ber. 102, 957 (1969).
- ²¹⁾ H. Saito, J. Amer. Chem. Soc. 95, 324 (1973).
- ²²⁾ H. C. Brown, J. Chem. Soc. 1956, 1248.
- 23) T. D. Coyle und F. G. A. Stone, Progr. Boron Chem. 1, 83 (1964).

⁸⁾ VIII. Mitteil.: H. Nöth und B. Wrackmeyer, Chem. Ber. 107, 3089 (1974), nachstehend.

⁹⁾ B. F. Spielvogel, R. Nutt und R. Izydore, Abstracts 2nd Int. Meet. Boron Chem. 1974, 76.

Jahrg. 107

schiebungen δ^{14} N und δ^{11} B von Amin-Boranen, Tab. 2 von Ammoniumsalzen. In Tab. 3 sind δ^{13} C-Werte von Alkanen sowie die zum Vergleich erforderlichen BN-Verbindungen aufgeführt. δ^{14} N-Werte von Aminen, ebenfalls für Vergleiche oder zur Standardisierung notwendig, finden sich in unseren früheren Arbeiten^{24,25)} sowie bei *Witanowski* und *Januszewski*²⁶⁾. Strukturparameter für Amine geben *Roberts* und *Lichter*²⁷⁾ an. Einflüsse der Alkylgruppe auf δ^{14} N werden wir daher nicht diskutieren.

	δ ¹⁴ N [ppm]	h _{1/2} [Hz]	δ11B [ppm]	Δ ¹⁴ N [ppm]	Δ ¹¹ B ^{a)} [ppm]	Lösungs- mittel
1 H ₃ N – BH ₃	+ 370	185	+ 22.3	-13	·÷-91.3	Monoglym
$2 H_3 N - B(CH_3)_3$	+336	159	+8.7	47	+93.8	
$3 H_3N - B(C_2H_5)_3$	+ 352	465	+3.1	-31	+ 89.6	—
$4 \text{ CH}_3(\text{H}_2)\text{N}-\text{BH}_3$	+367	295	+19.1	-11	+ 89.1	Monoglym
5 $CH_3(H_2)N - B(CH_3)_3$	+335	285	-+ 5.5	-43	+91.5	Monoglym
6 $CH_3(H_2)N - B(C_2H_5)_3$	+ 343	470	+2.2	35	- 88.7	_
7 (CH ₃) ₂ HN – BH ₃	+ 360	123	+13.5		-+-83.5	Monoglym
8 (CH ₃) ₂ HN $-$ B(CH ₃) ₃	+344	217	-+-4.3	-27	+90.3	_
9 $(CH_3)_2HN - B(C_2H_5)_3$	+-356	—	+1.2	-15	⊹87.7	-
10 (CH ₃) ₃ N – BH ₃	+340	100	+ 8.1	-25	+ 78.1	CH ₂ Cl ₂
11 $(CH_3)_3N - B(CH_3)_3$	+345	155	-0.1	20	+ 85.9	CH ₂ Cl ₂
12 $(CH_3)_3N - B(C_2H_5)_3$	+ 345	-	-4.3	20	+ 82.2	C ₂ H ₂ Cl ₄
$13 \square NH - BH_3$	+ 377	220	+15.8	-9	+ 85.8	Monoglym
14 $NH - B(CH_3)_3$	+ 357	200	+6.1	-29	+92.1	_
15 $NH - B(C_2H_5)_3$	+ 359	425	+ 2.6	27	+ 89.1	-
16 NH – BH3	+332	199	+14.7	11	+ 84.7	CH ₂ Cl ₂
$17 (C_2H_5)_3N - BH_3$	+335	212	+13.4	- -12	+ 83.4	_
18 $C_2H_5(H_2)N - B(CH_3)_3$		260	+ 4.1	-30	90.1	
19 $iC_3H_7(H_2)N - B(CH_3)_3$	+294	294	+5.0	-46	+91.0	
20 $tC_4H_9(H_2)N - B(CH_3)_3$	+286	180	+1.8	-31	87.8	_

Tab. 1. Kernresonanzdaten δ^{11} B und δ^{14} N von Amin-Boranen. Die Δ^{11} B- und Δ^{14} N-Werte sind chemische Verschiebungen, bezogen auf das dem Amin-Boran zugrunde liegende Boran bzw. Amin

a) Verschiebungsdifferenz zu Boran, wobei für BH3 ein 811B-Wert von ~70.0 angenommen wird⁸⁾.

Trägt man δ^{14} N und δ^{11} B entsprechender Amin-Borane gegeneinander auf, so ergibt sich eine annähernd lineare Beziehung (vgl. Abb. 1). Gleiches gilt auch für die Korrelation von δ^{14} N und δ^{11} B von Amin-Boranen mit δ^{13} C von isoelektronischen Alkanen

²⁴⁾ H. Nöth und B. Wrackmeyer, Chem. Ber. 106, 1145 (1973).

²⁵⁾ W. Beck, W. Becker, H. Nöth, B. Wrackmeyer, Chem. Ber. 105, 2883 (1972).

²⁶⁾ M. Witanowski und H. Januszewski, Can. J. Chem. 47, 1321 (1969).

²⁷⁾ R. L. Lichter und J. D. Roberts, J. Amer. Chem. Soc. 94, 3495 (1972).

	δ ¹⁴ N¤) [ppm]	h _{1/2} [Hz]	Δ14N [ppm]
NH4 ⁺	-+ 354.526)	5	-28.5
CH3NH3+	+ 351 26)	30	-27
$(CH_{3})_{2}NH_{2}^{+}$	<u></u> 348 26)	40	-23
(CH ₃) ₃ NH ⁺	+ 334 26)	30	-31
(CH ₃) ₄ N ⁺	+ 333.526)	6.5	-31.5
C ₂ H ₅ NH ₃ ⁺	+33626)	40	-16
$(C_2H_5)_2NH_2^+$	+ 320 26)	50	-16
(C ₂ H ₅) ₃ NH ⁺		50	-9
$(C_2H_5)_4N^+$	+ 311 26)	10	-12
iC3H7NH3+	+329		-11
(iC3H7)2NH2+	+ 305		-3
tC4H9NH3 ⁺	+ 314 26)	60	+3

Tab. 2. δ^{14} N-Werte und Verschiebungsdifferenzen Δ^{14} N von Ammonium-Ionen

a) Bezüglich weiterer Daten verweisen wir auf Lit. 18), S. 181.

Tab. 3. δ¹³C-Daten von Alkanen

Alkan	δ13C [ppm]	zu vergleichen mit:
 С ₆ Н ₆	0.0	_
CH₄	-+130.8ª)	NH ₄ ⁺ ; <i>BH</i> ₄ ⁻
H ₃ C-CH ₃	$+122.8^{a}$	$H_3N - CH_3^+; H_3N - BH_3$
H ₃ C-CH ₂ -CH ₃	+113.1a)	$H_3N-CH_2-CH_3^+$; $H_3C-NH_2-BH_3$
$H_3C - CH_2 - CH_3$	+112.6ª)	$H_2N(CH_3)_2^+; H_3C - NH_2 - BH_3$
(H ₃ C) ₃ CH	+104.5ª)	$HN(CH_{3})_{3}^{+}; (H_{3}C)_{2}NH - BH_{3}$
$(H_3C)_2CH - CH_3$	+104.4 ^{a)}	$H_3N - iC_3H_7^+$; (H_3C) ₂ NH - BH ₃
$(H_3C)_4C$	+100.5b)	$N(CH_3)_4^+$; $B(CH_3)_4^-$; $(CH_3)_3N - BH_3$; $H_3N - B(CH_3)_3$
$(H_3C)_3C - CH_3$	+96.9ы	$H_3N - tC_4H_9^+; H_3N - B(CH_3)_3, (CH_3)_3N - BH_3$
$H_3C-CH_2-CH_2-CH_2-CH_3$	+9 4.4 ъ)	$H_2N(C_2H_5)_2^+$
(H ₃ C-CH ₂) ₃ CH	+86.1ы	$HN(C_2H_5)_3^+$
$(H_3C - CH_2)_4C$	+91. 4 ь)	$N(C_2H_5)_4^+$; $B(C_2H_5)_4^-$; $H_3C - NH_2 - B(C_2H_5)_3$
$(H_3C - CH_2)_3C - CH_3$	+103.3ь)	$H_3N - B(C_2H_5)_3; (C_2H_5)_3N - BH_3$
$(H_3C-CH_2)_3C-CH_3$	+93.7ь)	$(C_2H_5)_3N - BH_3; H_3N - B(C_2H_5)_3$
$H_3C - CH_2 - C(CH_2 - CH_3)_3$	+101.4 ^{b)}	$H_3C - NH_2 - B(C_2H_5)_3$
$H_3C - CH_2 - C(CH_3)_3$	+92.0ь)	$H_3C - NH_2 - B(CH_3)_3$
$H_3C-CH_2-C(CH_3)_3$	+98.2ь)	$H_3C - NH_2 - B(CH_3)_3$
$(H_3C)_2CH - CH_2 - CH(CH_3)_2$	+ 79 .5 ^{ь)}	$H_2N(iC_3H_7)_2^+$
$(H_{3}C)_{2}CH - CH_{2} - C(CH_{3})_{3}$	+97.6ы)	$iC_3H_7 - NH_2 - B(CH_3)_3$
$(H_{3}C)_{2}CH - CH_{2} - C(CH_{3})_{3}$	+75.2ь)	$iC_{3}H_{7} - NH_{2} - B(CH_{3})_{3}$
$(H_{3}C)_{3}C - CH_{2} - C(CH_{3})_{3}$	+96.1 ^{b)}	$tC_4H_9-NH_2-B(CH_3)_3$
$(H_{3}C)_{3}C - CH_{2} - C(CH_{3})_{3}$	+72.0ь)	$tC_4H_9 - NH_2 - B(CH_3)_3$
$H_{3}C - CH_{2} - CH_{2} - C(CH_{3})_{3}$	+81.2 ^{b)}	$C_2H_5 - NH_2 - B(CH_3)_3$

Tab. 3 (Fortsetzung)

Alkan	δ ¹³ C [ppm]	zu vergleichen mit:	
$H_3C-CH_2-CH_2-C(CH_3)_3$	+97.9 ^{ъ)}	$C_2H_5-NH_2-B(CH_3)_3$	
$(H_3C)_2CH - C(CH_3)_3$	+ -95.8 ♭)	$(CH_3)_2 NH - B(CH_3)_3$	
$(H_3C)_2CH - C(CH_3)_3$	-] - 90.6 ь)	$(CH_3)_2 NH - B(CH_3)_3$	
$(H_3C)_3C - C(CH_3)_3$	+93.5 ^{ь)}	$(CH_3)_3N - B(CH_3)_3$	
CH3	+124.3 c)		
CC CH3	+126.0c)		
	-+ 104.4 c)	N B(CH ₃) ₃	
	100.0 c)	$\mathbb{D}_{B(CH_3)_3}^{H}$	
 a) E. G. Paul und D. M. Graut, J. At b) P. Lindemann und J. Q. Adams, A c) Abgeschätzt aus den 8¹³C-Werten 	mer. Chem. Soc nal. Chem. 43, von	:. 86, 2984 (1964). 1245 (1971).	
C (+ 131.7527);	сн, >с′ _{сн,}	(+115.74);	
$C_{CH_2-C_6H_5}^{H}$ (+117.44) un	id H₃C−CH₂-	-C ₆ H ₅ (+113.3 ⁴).	

(vgl. Abb. 2 und 3). Den gleichartigen Substituenteneinfluß auf die einzelnen Kerne spiegelt auch die Korrelation von $\delta^{14}N$ der Ammoniumsalze mit $\delta^{13}C$ von Alkanen wieder (vgl. Abb. 4).

Im Bereich der Amin-Borane liegt die Verbindung $(CH_3)_3B - N(CH_3)_3$ (11) besonders weit von der $\delta^{14}N/\delta^{11}B$ -Korrelationsgeraden entfernt (Abb. 1). Die Abweichung signalisiert sterische Effekte, insbesondere hier wohl die *B-Spannung*²²⁾. Allerdings zeigen die mit der Boran-Anlagerung an Ammoniak und aliphatische Amine einhergehenden Verschiebungen des ¹⁴N-NMR-Signals (vgl. die $\Delta^{14}N$ -Werte in Tab. 1) nur z. T. sterische Effekte an. $\delta^{14}N$ wird bekanntlich von einer Reihe nicht notwendigerweise gleichsinnig wirkender Faktoren bestimmt²⁶⁾. Einfacher scheinen hingegen die ¹⁴N-NMR-Daten von Azinen und Azolen interpretierbar zu sein¹⁸⁾.

Abb. 1. Korrelation von δ^{11} B und δ^{14} N von Amin-Boran-Addukten

Abb. 2. Korrelation von $\delta^{14}N$ von Amin-Boran-Addukten mit $\delta^{13}C$ von isoelektronischen Alkanen

Abb. 3. Korrelation von $\delta^{11}B$ und $\delta^{13}C$ von Amin-Boran-Addukten mit isoelektronischen und isosteren Alkanen

Abb. 4. Korrelationen von δ^{14} N verschiedener Ammoniumsalzreihen mit δ^{13} C entsprechender Alkane

Boran-Addukte von Azinen und Azolen

Bei Azinen und Azolen trägt das freie Elektronenpaar am N-Atom, das nicht zur Aufrechterhaltung des aromatischen Systems im Sinne von *Hückel* benötigt wird, kräftig zum σ_p -Term der Abschirmung bei^{14–16)}. Beansprucht man dieses Elektronenpaar durch Boran-Anlagerung, dann ändert sich die Abschirmung des Stickstoffs beachtlich. Werden die ¹⁴N-NMR-Signale bei den Amin-Boranen in der Regel um 10-30 ppm zu tieferem Feld verschoben, finden sich die der Boran-Addukte von N-Heterocyclen um 40-80 ppm bei höherem Feld (vgl. die Daten der Tab. 5). Die zur Ermittlung der Verschiebungsdifferenzen Δ^{14} N notwendigen δ^{14} N-Daten sind in der Tab. 4 zusammengestellt.

Verbindung	δ ¹⁴ N [ppm]	h _{1/2} [Hz]	Lösungs- mittel ^{a)}
21 💦	+ 62 + 60 29) + 68 16)	120 260	Ä – NM
22 ILC S CII3	+ 54	232	Ä
23 (^N)	-+ 39 -+ 4216)	190 220	Ä DMF
24	+7216)	700 650	Ä NM
25 C	+6816)	680	NM
26 (CH ₃)	+67	832	_
$\pi \qquad \qquad$	+70	_	МС
28	+92 +9416)	865 820	B MB
	+ 176 + 171 ¹⁹⁾ + 170 + 171 ¹⁹⁾ + 168.3 21)	605 1200 473 600	THF D MA MA AC
. 30 <i>L</i>	+215 (a) +115 (b) +221 (a) 19) +123 (b) 19)	160 390 150 325	- -
(a)¥´ CH3	+ 218 (a) 19) + 116 (b) + 214.0 (a) ²¹⁾ + 120.6 (b)	125 300 	TC AC
31 (a) N CH ₃ (b) CH ₃ (c) N CH ₃	+ 216 (а) + 117 (b)	270 600	_
$32 \qquad \sum_{\substack{(a) \in \mathcal{Y}\\ c_2 \in \mathcal{I}_1}} \sum_{j=1}^{N(b)}$	+ 197 (a) + 125 (b)	212 600	-
$33 \qquad \sum_{\substack{(a) \in \mathbf{X} \\ \mathbf{y} $	+164 (a, b)	600	-

Tab. 4. 814N-Werte und Halbhöhenbreiten von N-Heterocyclen

Verbindung	δ ¹⁴ N [ppm]	h _{1/2} [Hz]	Lösungs- mittel ^{a)}
34 () }	+ 140 + 129 + 135 19) + 135 19) + 126 21)	880 705 730 670	ÄA THF D MA AC
35 (w) CH ₃	+ 178 (a) $^{19)}$ + 68 (b) + 178 (a) $^{19)}$ + 78 (b) + 171.3 (a) $^{21)}$ + 69.1 (b)	142 325 185 385 	TC TC/MA A AC
$ \begin{array}{cccc} 36 & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	+ 158 (a) + 55 (b) + 126 + 125 + 134 19) + 136 19) + 132,2 21)	160 535 465 705 540 940	THF H2O D MA AC
38 ^(c) ∑ (,,)∑ (,,)∑ CH ₃	$+170 a)^{19}$ +126 b, c) +170 (a)^{19} +130 (b, c) +149.3 (a)^{21} +48.1 (b) +116.5 (c)	160 460 170 550 	 A AC
.39 ^(c) N	+147 (a) +101 (b, c)	_	_
40 (⁴) 41 (⁵)	+ 12419) + 5619) + 6819)	106 150 240	TC — MA
*2 ⁴²	219) 419) 619)	220 290 335	DMF MA
43 (). NS	+ 80 ¹⁹⁾ + 85 ¹⁹⁾ + 80	108 135 150	— MA AC

Tab. 4 (Fortsetzung)

- a) Ä = Diäthyläther NM = Nitromethan DMF = N,N-Dimethylformamid MC Methylenchlorid THF = Tetrahydrofuran

- B Benzol MB Methylenbromid MA Methylalkohol ÄA = Äthylalkohol D → Dioxan TC = Tetrachlorkohlenstoff

Vert	bindung	δ ¹⁴ N [ppm]	h _{1/2} [Hz]	δ ¹¹ Β [ppm]	Δ14N [ppm]	∆11Ba) [ppm]	Lösungs- mittel
41	С. Вн,	+136	320	+11.8	+ 74	+81.8	CH ₂ Cl ₂
45	N B(CH ₃) ₃	+ 108	324	0.0	+44	+ 86.0	CH ₂ Cl ₂
46	$\bigcap_{\substack{N\\B(C_2H_4)_3}}$	+108	750	-2.2	+44	+84.3	O(C ₂ H ₅) ₂
47		+148	150	+7.2	+ 86	+44.6	Toluol
48	[№] (С ₃ Н ₈) ₃	+ 80	_	7.6	+41	+78.9	CH ₂ Cl ₂
-19	∑ N B(C₂H₀)3	-	-	-4.3	_	+82.2	CH ₂ Cl ₂
50	H ₃ C N CH ₃	+142	145	+17.8	+ 88	+87.8	CH ₂ Cl ₂
51		+135	360	+12.9	+63	+82.9	CH ₂ Cl ₂
52	С , , , , , , , , , , , , , , , , , , ,	+90	360	-12.3	+18	+73.7	CH ₂ Cl ₂
53	$\bigcup_{\substack{N \\ B(C_2il_{\beta})_3}}$	+ 89	607	-16.5	+17	+70.0	O(C ₂ H ₅) ₂
54	$\bigcup_{H_{s}C} \bigvee_{BH_{s}}^{N}$	+154	-	+8.8	+ 87	+78.8	CH ₂ Cl ₂
55	CCC _K _{BH} ,	+150	900	+11.5	+82	+ 81.5	CH ₂ Cl ₂
56	B(CH ₃) ₃	+108	570	+4.0	+40	+90.0	CH ₂ Cl ₂
<u>5</u> 7	B(C ₂ H ₃):	+109	690	-2.1	+41	+84.4	O(C ₂ H ₅) ₂
58	CH ₃	+ 148	-	+11.6	+ 78	+81.6	CH ₂ Cl ₂

Tab. 5. Kernresonanzdaten und	Verschiebungsdifferenzen	von Boran-Addukten an	1 N-Hetero-
	cyclen		

Verl	bindung	δ ¹⁴ N [ppm]	h _{1/2} [Hz]	δ ¹¹ Β [ppm]	∆ ¹⁴ N [ppm]	(ppm)	Lösungs- mittel
59		+81		-16.5	+11	+ 70.0	CH ₂ Cl ₂
"		+ 205 (a) (b)	-	+19.2	-	+ 89.2	CH ₂ Cl ₂
61	$\mathcal{L}_{(a)}^{\mathcal{B}(CH_3)_3}$	+ 207 (a) + 164 (b)	237	+6.0	_	+92.0	CH2Cl2
62		+ 190 (a) + 144 (b)		+ 2.1	_	- - 88.6	CH ₂ Cl ₂
63	(a) CH3	+ 214 (a) + 173 (b)	260 172	+18.8 	1 +-58	+88.8	CH ₂ Cl ₂
64	B(CH ₃), (a) N (b) CH ₃	+ 217 (a) + 149 (b)	-	-+-5.2	+2 +34	+91.2	CH ₂ Cl ₂
65		+ 202 (a) + 1 50 (b)	-	· + ·3.2	-13 +35	+ 89.7	CH ₂ Cl ₂
66	$\underbrace{ \begin{pmatrix} BH_3 \\ N \\ 0 \\ 0 \\ C_2 H_8 \end{pmatrix}}^{BH_3}$	+ 192 (a) + 176 (b)	_	+18.8	5 +51	+88.8	CH ₂ Cl ₂
67	$(a) \begin{bmatrix} B(CH_3)_3 \\ B_1 \\ B_2 \\ B_3 \\ C_2H_3 \end{bmatrix}$	+ 196 (a) + 132 (b)	160 	+ 5.9 —	-5 +7	+91.9	CH ₂ Cl ₂
68	B(C ₂ H ₆) ₃	+ 193 (a) - (b)		+ 1.2	- 4 -	+ 87.7	-
6	(a) CH3 CH3	+ 204 (a) + 173 (b)	-	+19.7	-12 +56	⊹89.7	CH ₂ Cl ₂
70	B(CH ₄), (a) (b) (c) (c) (c) (c) (c) (c) (c) (c	+216 (a) +135 (b)		+ 5.2	0 + 18	+91.6	CH ₂ Cl ₂

Tab. 5 (Fortsetzung)

Verb	indung	δ ¹⁴ N [ppm]	h _{1/2} [Hz]	δ ¹¹ Β [ppm]	Δ ¹⁴ N [ppm]	Δ11Ba) [ppm]	Lösungs- mittel
71	B(C ₂ H ₆) ₃	+ 198 (a) + 149 (b)		+4.6	18 + 32	+91.1	CH ₂ Cl ₂
72		+171 (a) +201 (b)		+ 19.6	+7 +37	+ 89.6	CH ₂ Cl ₂
73		+ 142 (a) + 193 (b)	-	+ 5.6	22 +29	+91.6	CH ₂ Cl ₂
74	B(C ₁ H ₀) ₁	+ 151 (a) + 189 (b)	_	+2.7	13 +25	+ 89.2	O(C2H3)2
75	(a) N BH ₃	+ 153 (a) + 120 (b)	-	+18.4	-	+ 88.4	CH ₂ Cl ₂
76	(a) ¹ H B(CH ₃),	+152 (a) +86 (b)	-	+3.6	+23 43	+ 89.6	CH ₂ Cl ₂
77	(a) ^N BH ₃ CH ₃	+ 169 (a) + 141 (b)	320 320	+19.6	-9 +73	+ 89.6	THF
78	(a) X 13(CH ₃) ₃ CH ₃	+ 162 (a) 82 (b)		+1.5	-16 +14	+87.5	_
79	(a) (b) (a) (CH ₃) Si(CH ₃)	+ 135 (a, b)	525	+17.4	-23 +80	+87.4	CH ₂ Cl ₂
30	H2B BH2	+ 109	566	+8.7	-	-	CH ₂ Cl ₂
81	(CHJ)3H (c)N (c)N (c)N (b)	+ 160 (a) + 68 (b) + 134 (c)	-	+ 4.8	10 58 +8	- + 90.8	CH ₂ Cl ₂
87	CH3 L N BH3	+132	180	+15.4	+ 52	- + 85.4	CH ₂ Cl ₂
8	3 ('S B(CH_3)3	+96	182	-1.3	+16	+84.7	

Tab. 5 (Fortsetzung)

a) Für BH₃ wurde ein δ^{11} B-Wert von --70.0 angenommen⁸⁾.

Ver	bindung	δ ¹⁴ N [ppm]	h _{1/2} [Hz]	∆ ¹⁴ N [ppm]	Lösungs- mittel
84	Image: Cite of the second s	+181=)	20	+118	H2O/HCI
85		+177	28	+115	H₂O
86	ÇN] CI	+ 94	-	+55	H ₂ O/HCl
87	H ₃ C $\left(\sum_{H_{1}}^{N} CH_{3} \right)$ CI	+179	168	+125	H2O/HCi
**	CTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	+185ª)	50	+113	H ₂ O/HCl
89		+ 185	252	+113	H ₂ O
90		+ 195	228	+128	H2O/HCI
91		+188a)	55	+120	H2O/HCI
92	$\left(\bigcup_{H_{1}} \bigcup_{H_{2}} \bigcup$	+180	760	+110	H ₂ O/HCI
93	Су ^н] сі	+205	164	_	H2O/HC1
14	$\left(\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	+216	387	+1 (a) +101 (b)	CH ₂ Cl ₂
95	CH ₃ CH ₃ CH ₃ CH ₃	+199	230	—17 (a) +82 (b)	H ₂ O
96	$\left[\begin{array}{c} \sum_{v \in V \\ v \in V \\ $	+187	340	10 (a) +62 (b)	CH ₂ Cl ₂
9 7	$\left(\begin{array}{c} N_{1}^{(CH_{3})} \\ N_{1}^{(CH_{3})} \\ Si(CH_{3})_{3} \end{array} \right)$	+176 (a) +212 (b)		+10 (a) +48 (b)	CH ₂ Cl ₂
96	CN CI	+187	702	-	H ₂ O/HCl

Tab. 6. 814N-Werte N-protonierter und N-methylierter Kationen von N-Heterocyclen

		•			
Vert	bindung	814N [ppm]	h _{1/2} [Hz]	Δ ¹⁴ N [ppm]	Lösungs- mittel
99	CH1 CH2 CH2 CH2	+170	520	—8 (а) +102 (b)	H ₂ O
100	$\begin{bmatrix} \mathbf{I} \\ \mathbf{Y} \\ \mathbf{X} $	+203.4 (a) +46.9 (b) +203.0 (c)	_	-	H2\$04/ CF3CO2H
101	∑ _N s]J	+171	164	+91	D ₂ O
102	$\left(\sum_{\overline{N}}^{N} \right)^{L,i}$	+111	-	-	THF

Tab. 6 (Fortsetzung)

a) M. Witanowski, J. Amer. Chem. Soc. 90, 5683 (1968).

Azine und Azin-Borane

Die Anlagerung von BH₃, $B(CH_3)_3$ und $B(C_2H_5)_3$ an Azine und Azole zieht, wie die Daten der Tab. 5 zeigen, eine wesentlich geringere Hochfeldverschiebung des ¹⁴N-NMR-Signals nach sich als N-Protonierung oder N-Methylierung (vgl. Werte in Tab. 6). Die δ^{14} N-Werte für die BR₃-Addukte von Pyridin, Chinolin und Isochinolin liegen immer zwischen den δ^{14} N-Werten der N-Heteroaromaten und deren N-protonierten bzw. N-methylierten Kationen²⁸⁾. Die Abb, 5 illustriert diesen Punkt am Beispiel der Pyridin- und Imidazol-Verbindungen. In den Boran-Addukten wird die Elektronendichte am Stickstoff größer als in den Kationen sein, d. h. in den δ^{14} N-Werten drückt sich die Beanspruchung des freien Elektronenpaars am Stickstoff aus. Je schwächer ein Boran von N-Heteroaromaten gebunden wird, desto geringer sollte die Hochfeldverschiebung, ausgedrückt in der Verschiebungsdifferenz $\Delta^{14}N$, sein. Da aber die Übernahme negativer Ladung vom Boratom zusammen mit der Tetrakoordination des Bors eine Hochfeldverschiebung des ¹¹B-NMR-Signals bewirkt, wird man aus den Δ^{11} B-Werten der einzelnen Borane – vergleichbar sind naturgemäß zunächst immer nur Addukte eines Borans - einerseits die relative Donorwirkung des N-Heterocyclus und andererseits qualitativ die Stärke der BN-Bindung entnehmen können³⁰⁾.

²⁸⁾ Dies gilt auch für die N-Oxide, z. B. Pyridin-N-oxid: $\delta^{14}N + 100 \text{ ppm}^{29}$.

²⁹⁾ D. Herbison-Evans und R. E. Richards, Mol. Phys. 8, 19 (1964).

³⁰⁾ Die δ¹¹B-Werte von Amin-Boranen liegen ebenfalls immer zwischen δ¹¹B von Boranen und Boraten BR₄⁻.

$$N \rightarrow N - BR_3 \rightarrow N - R$$
 und
BR₃ $\rightarrow N - BR_3 \rightarrow BR_4^{\Theta}$

N-Protonierung und N-Methylierung des Pyridins (84, 85) ergibt praktisch gleiche Abschirmungsgewinne Δ^{14} N von 118 bzw. 115 ppm. Die Anlagerung von BH₃ (44) verschiebt das ¹⁴N-NMR-Signal nur mehr um 74 ppm zu höherem Feld, während $B(CH_3)_3$ und $B(C_2H_5)_3$ (45, 46) mäßige 44 ppm erbringen. BBr₃, eine im Vergleich zu BH₃ und BR₃ stärkere Lewis-Säure, belegt in 47 mit beachtlichen 86 ppm die qualitative Relation zwischen Säure-Stärke und Verschiebungsdifferenz. Andererseits zeigen die Δ^{11} B-Daten, daß man sie nicht oder nur bedingt zu Aussagen über relative Aciditäten heranziehen darf: BH₃ und die schwächeren Lewis-Säuren BR₃ weisen größere Δ^{11} B-Werte auf als die stärkere Säure BBr₃. Aber selbst innerhalb einer Reihe, z. B. der BH₃-Addukte von Pyridin (44), 2,6-Dimethylpyridin (50), Chinolin (51), 8-Methylchinolin (54), Isochinolin (55) und 3-Methylisochinolin (58) laufen $\Delta^{14}N$ und Δ^{11} B nicht parallel. Die gleichartigen sterischen Verhältnisse für die BH₃-Anlagerung an Pyridin und Isochinolin entsprechen gleichen Abschirmungsgewinnen $\Delta^{11}B$. Dies gilt auch für die $B(CH_3)_3$ - und $B(C_2H_5)_3$ -Addukte von Pyridin (52, 53), Pyrazin (48, 49) und Isochinolin (56, 57). Der bei der Protonierung von 2,6-Lutidin (87) und Isochinolin (91) im Vergleich zu Pyridin (84) bzw. Chinolin (88) gefundene größere Abschirmungsgewinn schlägt auch auf die entsprechenden BH₃-Addukte durch. Aus den Δ^{11} B-Werten der BH₃-Addukte kann man schließen, daß die Anlagerung von BH₃ an das im Vergleich zu Pyridin basischere 2,6-Lutidin sterisch ungehindert ist, während der kleinere Δ^{11} B-Wert von 8-Methylchinolin-Boran im Vergleich zu Chinolin-Boran sterische Einflüsse andeutet³¹).

Wählt man statt der sterisch relativ anspruchslosen Lewis-Säure BH₃ die sperrigen Trialkylborane B(CH₃)₃ und B(C₂H₅)₃, dann werden nichtbindende Wechselwirkungen gravierend. In Abwesenheit zusätzlicher sterischer Effekte entsprechen die Δ^{14} Nund Δ^{11} B-Daten der BR₃-Addukte von Pyridin, Pyrazin und Isochinolin einander weitgehend. Der Wasserstoff in 8-Position des Chinolins erschwert jedoch bereits die Anlagerung von B(CH₃)₃ und B(C₂H₅)₃. Die Δ^{14} N-Werte für **52** und **53** sind dementsprechend klein im Gegensatz zu recht beträchtlichen Δ^{11} B-Werten, die jedoch nicht mehr an die der Pyridin- oder Isochinolin-Addukte (**45**, **46**, **56**, **57**) herankommen. Die Methylgruppe in 8-Methylisochinolin blockiert die Wechselwirkung mit B(CH₃)₃ bereits so stark, daß auf Grund des hohen B(CH₃)₃-Dampfdrucks bei der Meßtemperatur (30°C) auf die NMR-Messung verzichtet werden mußte³²⁾. Gleiches gilt auch für das B(CH₃)₃-Addukt des 3-Methylisochinolins, dessen B(C₂H₅)₃-Addukt (**59**) die schwache BN-Bindung durch ein sehr kleines Δ^{14} N (+11 ppm) demonstriert.

Azole und Azol-Borane

Pyrrole sind bekanntlich kaum basisch; dementsprechend ließ sich auch keine Wechselwirkung zwischen N-Methylpyrrol und B(CH₃)₃ bzw. B(C₂H₅)₃ NMR-spektroskopisch feststellen. Falls Azole Addukte bilden, kann man aus diesem Ergebnis erwartungsgemäß schließen, daß die Anlagerung des Borans nur an dem Stickstoff-Atom erfolgt, dessen freies Elektronenpaar nicht zur Aufrechterhaltung des 6π-Elektronensystems benötigt wird. Da mit der Addition eine Hochfeldverschiebung des ¹⁴N-NMR-Signals verbunden ist, kann man diese als Zuordnungskriterium in Diazolen, Triazolen und Tetrazolen heranziehen, falls dies erforderlich sein sollte. In vielen Fällen genügt jedoch bereits das Zuordnungskriterium von *Witanowski* et al.¹⁹⁾, wonach δ^{14} N linear von der π-Elektronendichte abhängig ist und ein N-Atom vom Typ A daher bei höherem Feld zur Resonanz kommt als Stickstoff vom Typ B (Formel 103).

Imidazol, Pyrazol und Triazol liefern allerdings nur ein einziges ¹⁴N-NMR-Signal¹⁹, da auf Grund von Wasserstoffbrücken und H-Übertragung im Mittel alle N-Atome gleichwertig werden. Halbhöhenbreiten und δ^{14} N-Werte sprechen daher stark auf Lösungsmittel an (vgl. Tab. 4). Aus den Daten dieser Tabelle geht auch hervor, daß mit zunehmendem +I-Effekt

³¹⁾ Beim Versuch, Acridin-Boran aus den Komponenten in THF darzustellen, erhielten wir ein gelbes, festes Produkt der korrekten Zusammensetzung mit $\delta^{11}B = -43$ ppm (breit, unaufgelöst). Ein ¹⁴N-NMR-Signal konnten wir wegen zu geringer Löslichkeit nicht beobachten. Das ¹¹B-Signal legt ein Produkt vom Aminoborantyp, das durch Hydroborierung entstanden sein kann, nahe.

³²⁾ Auch von 2,6-Dimethylpyridin und Acridin konnten wir keine B(CH₃)₃- und B(C₂H₅)₃-Addukte darstellen.

des Substituenten am Typ-A-Stickstoff dieser schlechter abgeschirmt wird, während der Typ-B-Stickstoff eine Hochfeldverschiebung erfährt.

Für das N-Trimethylsilylderivat des Imidazols (33) wird nur ein einziges ¹⁴N-NMR-Signal beobachtet, für N-(Trimethylsilyl)pyrazol (36) und 1-Trimethylsilyl-1,2,4-triazol (39) sind zwei ¹⁴N-NMR-Signale zu erkennen. Wir führen dies auf eine starke Beteiligung der Grenzstruktur II am Grundzustand zurück; eine rasche Wanderung der Trimethylsilylgruppe schließen wir auf Grund der Protonenresonanzspektren aus. Den Einfluß der Heteroatome im Ring haben bereits *Witanowski* et al. ausführlich diskutiert¹⁹).

Die Addition von H⁺ oder CH₃⁺ an die Azole führt zu kleineren Hochfeldverschiebungen als bei Azinen. Da die positive Ladung von beiden Stickstoff-Atomen übernommen (IV-V) werden kann, ist diese Beobachtung leicht zu erklären.

Die BH₃-Anlagerung an die untersuchten Imidazole (60, 63, 66, 69, 72), Pyrazole³³⁾ (75, 77, 79) und Triazole³⁵⁾ liefert fast gleiche Δ^{11} B-Werte, während die zugehörigen Abschirmungsgewinne $\Delta^{14}N$ für die Imidazolderivate (50-60 ppm) geringer als für Pyrazolderivate (70-80 ppm) sind. Jedoch ist Δ^{11} B für die Fünfringsysteme größer als für die Sechsringheterocyclen, Δ^{14} N hingegen kleiner. Da Imidazole und Pyrazole recht unterschiedliche Basizität besitzen, kann man den gleichartigen und praktisch gleich hohen Abschirmungszuwachs Δ^{11} B nicht unmittelbar mit der Basizität koppeln. Entscheidend ist offenbar die Ladungsdelokalisierung, die es gestattet, mehr Ladung auf das B-Atom zu übertragen (Grenzstruktur VII).Konsequenterweise sind daher auch die Δ^{14} N-Werte kleiner als bei den Azinen. Derselbe Trend zeichnet sich auch bei den Trimethylboran- und Triäthylboran-Verbindungen der Imidazole (61, 62, 64, 65, 67, 68, 70, 71, 73, 74), Pyrazole (76, 78) und Triazole (81) ab. Der Stickstoff vom Typ A erfährt meist einen geringen Abschirmungsverlust, der Addukt-Stickstoff einen Abschirmungsgewinn, der aber bei den Pyrazol-Addukten sehr viel kleiner als bei den Imidazolderivaten ist, eine Folge der unmittelbaren Nachbarschaft eines elektronegativen Elements.

Nach Untersuchungen von Saito²¹⁾ erfolgt die Protonierung von 1-Methyl-1,2,4triazol am 4-N-Atom. An diesem Stickstoff lagert sich auch Trimethylboran (81) an. Die Addition eines zweiten mols $B(CH_3)_3$ an den 2-Stickstoff beobachteten wir nicht. Seine Basizität wird durch die Addition von 1 mol BR₃ und Delokalisierung der positiven Ladung im Ring offenbar beträchtlich herabgesetzt.

³³⁾ Erwärmen von N-(Trimethylsilyl)pyrazol-Boran (79) führt unter (CH₃)₃SiH-Abspaltung quantitativ zum Pyrazabol³⁴) (82).

³⁴⁾ S. Trofimenko, J. Amer. Chem. Soc. 88, 1899 (1966); 89, 3165 (1967).

³⁵⁾ Umsetzungen von 1,2,4-Triazol mit BH3 im Molverhältnis 1:1 und 1:2 in Tetrahydrofuran ergaben nur unlösliche Produkte.

Die δ^{14} N-Werte des BH₃- und B(CH₃)₃-Addukts des Isothiazols (**82**, **83**) belegen die Anlagerung der Lewis-Säure an das Stickstoff-Atom. Die Δ^{11} B-Daten weisen das Isothiazol als schlechteren Donor im Vergleich zu den untersuchten Azolen aus³⁶.

Wir danken der Deutschen Forschungsgemeinschaft für eine Sachbeihilfe, dem Fonds der Chemischen Industrie und der Badischen Anilin- & Soda-Fabrik AG für unbürokratische finanzielle Unterstützung, Fräulein R. Dietrich für einsatzfreudige Mitarbeit bei den präparativen sowie Frau L. Moser und Herrn K. Schönauer für elementaranalytische Arbeiten.

Experimenteller Teil

Die ¹¹B- und ¹⁴N-Kernresonanzmessungen führten wir mit einem Varian-HA-100-Kernresonanzspektrometer durch. Alle in dieser Arbeit angegebenen chemischen Verschiebungen beziehen sich bei $\delta^{11}B$ auf BF₃·O(C₂H₅)₂ extern und bei $\delta^{14}N$ auf eine gesättigte wäßr. NaNO₃-Lösung (extern). Die Spektrenauswertung erfolgte nach der Seitenbandtechnik.

Die untersuchten aliphatischen Amine und ein Teil der N-Heterocyclen waren Handelsprodukte. Sie wurden nach fraktionierter Destillation, Trocknen und nach NMR-spektroskopischer Reinheitskontrolle eingesetzt. Isothiazol stellte Herr Dr. J. C. Weis zur Verfügung. N-Methylpyrazol⁴⁰⁾ und 1-Methyl-1,2,4-triazol⁴¹⁾ erhielten wir nach Literaturvorschriften, desgleichen die Trimethylsilylazole⁴²⁾. Trimethylboran⁴³⁾, Triäthylboran⁴⁴⁾ und BH₃ in Tetrahydrofuran⁴⁵⁾ bereiteten wir nach bewährten Methoden. B(CH₃)₃ bewahrten wir als Isopropylamin-Addukt auf und setzten daraus in einer Vakuum-Apparatur mit 2 N HCl B(CH₃)₃ frei (Ausb. 99–99.5%).

Alle Reaktionen mit den Boranen wurden unter Stickstoff oder in einer Vakuum-Apparatur durchgeführt. Dazu wurde zu der freigesetzten $B(CH_3)_3$ -Menge ein Äquivalent des Amins hinzukondensiert und das Addukt nach völligem Abreagieren isoliert. Durch Zutropfen von $B(C_2H_5)_3$ zum Amin in Äther entstanden die Triäthylboran-Addukte. In gleicher Weise erhielten wir die meisten BH₃-Additionsverbindungen durch Zutropfen einer frisch dargestellten BH₃-THF-Lösung zu einer Äther- oder Benzollösung der Stickstoff-Verbindung. Die Reinheitskontrolle erfolgte bei allen Verbindungen elementaranalytisch (ein relativ großer Teil der Verbindungen verbrannte auch bei Zusatz von V_2O_5 oder WO₃ nur langsam, so daß besonders bei C und N relativ große Abweichungen von der berechneten Zusammensetzung resultierten) und ¹H-NMR-spektroskopisch. ¹¹B-NMR-Spektren zeigten keine anderen Spezies außer den Addukten an.

Von N-Verbindungen, die keine isolierbaren Boran-Additionsverbindungen lieferten, nahmen wir ¹¹B- und ¹⁴N-NMR-Spektren nach Zumischen der berechneten Boran-Menge auf. Alle relevanten Daten über die Addukte sind in Tab. 7 aufgeführt.

- 40) G. Dedichen, Ber. Deut. Chem. Ges. 39, 1831 (1906).
- 41) M. R. Atkins und J. B. Polya, J. Chem. Soc. 1954, 141.
- 42) L. Birkofer, P. Richter und A. Ritter, Chem. Ber. 93, 2804 (1960).
- 43) H. C. Brown, J. Amer. Chem. Soc. 67, 374 (1945).
- 44) R. Köster, Liebigs Ann. Chem. 618, 31 (1958).
- 45) H. C. Brown und P. A. Tierney, J. Amer. Chem. Soc. 80, 1552 (1958).

 ³⁶⁾ In den Pentacarbonyl(isothiazol)metall(0)-Verbindungen des Chroms, Molybdäns und Wolframs³⁷⁾ liegt das ¹⁴N-NMR-Signal bei sehr viel höherem Feld als bei den Boran-

Addukten. Dies belegt einen Anisotropie-Effekt des Übergangsmetalls, wie er an anderer Stelle diskutiert wird³⁸, ¹⁸, ³⁹.

³⁷⁾ J. C. Weis, Dissertation, Univ. München 1972.

³⁸⁾ M. Witanowski und G. A. Welb, Annu. Rev. NMR-Spectrosc. 5 A, 395 (1972).

³⁹⁾ R. Bramley, B. N. Figgis und R. S. Nyholm, J. Chem. Soc. A 1967, 861; B. M. Fung und S. C. Wei, J. Magn. Resonance 3, 1 (1970).

	Summenformel (MolMasse)	Schmp. (°C)	СНИ
48	C ₁₆ H ₃₄ B ₂ N ₂ (276.08)	_	Ber. 69.60 12.36 10.16 Gef. 66.37 11.59 12.04
49	C ₁₀ H ₁₉ BN ₂ (178.09)	_	Ber. 66.50 10.67 15.72 Gef. 66.50 10.58 15.79
50	C ₇ H ₁₂ BN (120.98)	120	Ber. 68.40 9.75 11.40 Gef. 66.87 10.20 11.41
54	C ₁₀ H ₁₂ BN (157.01)	88 92	Ber. 76.50 7.71 8.92 Gef. 72.92 7.39 8.44
56	C ₁₂ H ₁₆ BN (195.08)	84-85	Ber. 75.65 8.65 7.55 Gef. 74.92 7.94 7.50
58	$C_{10}H_{12}BN$ (157.01)	123-125	Ber. 76.50 7.71 8.92 Gef. 75.00 7.68 8.52
60	$C_{3}H_{7}BN_{2}$ (81.91)	_	Ber. 43.96 8.54 34.18 Gef. 40.38 7.86 30.79
61	$C_6H_{13}BN_2$ (129.95)	39-42	Ber. 55.25 10.04 21.55 Gef. 55.77 9.56 23.29
62	$C_9H_{19}BN_2$ (160.96)	-	Ber. 59.60 11.87 17.40 Gef. 62.57 12.18 15.61
63	$C_4H_9BN_2$ (95.93)		Ber. 50.11 9.38 29.18 Gef. 50.36 9.56 26.32
64	$C_7H_{15}BN_2$ (137.97)	71-73	Ber. 60.80 10.93 20.24 Gef. 59.63 10.61 19.55
66	$C_{5}H_{11}BN_{2}$ (109.95)	_	Ber. 54.50 10.02 25.45 Gef. 54.37 10.15 24.95
67	$C_8H_{17}BN_2$ (152.00)	30	Ber. 63.15 11.25 18.42 Gef. 63.19 11.03 19.55
69	$C_5H_{11}BN_2$ (109.95)	7173	Ber. 54.50 10.02 25.45 Gef. 50.19 9.71 24.16
70	$C_8H_{17}BN_2$ (152.00)	_	Ber. 63.15 11.25 18.42 Gef. 59.94 10.25 21.00
71	$C_{11}H_{23}BN_2$ (189.01)	-	Ber. 69.31 12.21 14.82 Gef. 66.73 11.44 14.77
72	C ₆ H ₁₅ BN ₂ Si (154.08)	-	Ber. 46.72 9.80 18.17 Gef. 41.64 8.24 20.60
74	C ₁₂ H ₂₇ BN ₂ Si (233.14)	-	Ber. 62.22 11.79 12.02 Gef. 60.52 11.56 12.31
77	C ₄ H ₉ BN ₂ (95.93)		Ber. 50.11 9.38 29.18 Gef. 50.77 9.74 28.74
78	C ₇ H ₁₅ BN ₂ (137.97)	_	Ber. 60.80 10.93 20.24 Gef. 59.49 9.88 21.17
79	C ₆ H ₁₅ BN ₂ Si (154.08)		Ber. 46.65 9.80 18.18 Gef. 41.26 7.79 20.54
81	C ₆ H ₁₄ BN ₃ (139.01)	30	Ber. 51.80 10.01 30.20 Gef. 51.75 10.46 31.68
83	C ₆ H ₁₂ BNS (141.00)	_	Ber. 51.08 8.58 9.94 Gef. 49.32 8.46 10.05

Tab. 7. Analytische Daten von Boran-Addukten einiger Azine und Azole

[142/74]