Chem. Ber. 107, 3070 - 3088 (1974)

Kernresonanzspektroskopische Untersuchungen an Borverbindungen, VII<sup>1)</sup>

# <sup>11</sup>B- und <sup>14</sup>N-Kernresonanzstudien an tetrakoordinierten Bor-Stickstoff-Verbindungen

Heinrich Nöth\* und Bernd Wrackmeyer

Institut für Anorganische Chemie der Universität München. D-8000 München 2. Meiserstr. 1

Eingegangen am 10. April 1974

Die chemischen Verschiebungen  $\delta^{11}B$  und  $\delta^{14}N$  einer großen Zahl von tetrakoordinierten Bor-Stickstoff-Verbindungen werden mitgeteilt und diskutiert. Es besteht eine nahezu lineare Korrelation zwischen den  $\delta^{14}N$ - bzw.  $\delta^{11}B$ -Werten der  $R_3B$ -Addukte (R-H,  $CH_3$ ) aliphatischer Amine und den  $\delta^{13}C$ -Daten der mit diesen Addukten isoelektronischen und isosteren Alkanen. Außerdem geben die  $\delta^{14}N$ - und  $\delta^{11}B$ -Daten von  $R_3B$ -Addukten (R=H,  $CH_3$ ,  $C_2H_5$ ) mit N-Heteroaromaten (Azinen, Azolen) Auskunft über ihre Stabilität und Struktur.

## Nuclear Magnetic Resonance Studies on Boron Compounds, VII 1) 11B and 14N N.M.R. Studies on Tetracoordinated Boron Nitrogen Compounds

<sup>11</sup>B and <sup>14</sup>N chemical shifts for many tetracoordinated boron nitrogen compounds are reported and discussed. There is a nearly linear relationship for  $\delta^{14}$ N or  $\delta^{11}$ B of R<sub>3</sub>B adducts (R = H, CH<sub>3</sub>) of aliphatic amines and  $\delta^{13}$ C of alkanes isoelectronic and isosteric with these adducts. Furthermore,  $\delta^{14}$ N and  $\delta^{11}$ B data of R<sub>3</sub>B adducts (R = H, CH<sub>3</sub>, C<sub>2</sub>H<sub>5</sub>) of N-heteroaromatic systems (azines, azoles) give information related to their stability and structure.

<sup>11</sup>B-Kernresonanzuntersuchungen an Verbindungen des tetrakoordinierten Bors ergaben, daß die <sup>11</sup>B-NMR-Signale im Vergleich zu dreifach koordinierten Verbindungen deutlich hochfeldverschoben sind <sup>2,3)</sup>. Messungen der <sup>13</sup>C-Kernresonanz an Alkanen, Alkenen und Carbenium-Ionen führten zu analogen Ergebnissen<sup>4)</sup>. In beiden Fällen kann man den Abschirmungsgewinn bei erhöhter Koordination und der damit zwangsläufig verbundenen Änderung der Geometrie auf einen kleineren Beitrag des paramagnetischen Terms  $\sigma_p$  zur Gesamtabschirmung zurückführen. Nöth und Vahrenkamp<sup>3)</sup> sowie Spielvogel und Purser<sup>5)</sup> fanden lineare Beziehungen zwischen  $\delta$ <sup>11</sup>B und  $\delta$ <sup>13</sup>C von Boranaten<sup>3)</sup> und Amin-Boranen<sup>5)</sup> einerseits und Alkanen andererseits sowie zwischen den paarweise additiven Parametern<sup>6)</sup> und Substituentenparametern<sup>7)</sup>

<sup>1)</sup> VI. Mitteil.: H. Nöth, W. Tinhof und B. Wrackmeyer, Chem. Ber. 107, 518 (1974).

<sup>2)</sup> G. R. Eaton und W. N. Lipscomb, NMR-Studies of Boron Hydrides and Related Compounds, W. A. Benjamin Inc., New York 1968.

<sup>3)</sup> H. Nöth und H. Vahrenkamp, Chem. Ber. 99, 1049 (1966), vgl. die dort zitierte Literatur.

<sup>4)</sup> G. C. Levy und G. L. Nelson, Carbon 13 NMR for Organic Chemists, J. Wiley Interscience, New York 1972.

<sup>5)</sup> B. F. Spielvogel und J. M. Purser, J. Amer. Chem. Soc. 89, 5294 (1967).

<sup>6)</sup> B. F. Spielvogel und J. M. Purser, J. Amer. Chem. Soc. 93, 4418 (1971).

<sup>7)</sup> B. F. Spielvogel und J. M. Purser, Inorg. Chem. 7, 2156 (1968).

beider Kerne. Derartige lineare Korrelationen bestehen nach unseren Untersuchungen auch zwischen  $\delta^{11}B$  von Boran-Derivaten BXYZ und  $\delta^{13}C$  entsprechender Carbenium-Ionen CXYZ<sup>+8,9)</sup>. Es lag daher nahe, die  $\delta^{14}N$ -Daten von Amin-Boranen und Ammoniumsalzen in vergleichende Betrachtungen mit einzubeziehen.

<sup>11</sup>B- insbesondere aber <sup>14</sup>N-NMR-Daten von Amin-Boranen sind meist nicht einfach zu interpretieren. Günstiger liegen die Verhältnisse bei Boran-Addukten von N-Heteroaromaten, da sich durch die Anlagerung des Borans die Geometrie am Stickstoff nicht oder nur sehr wenig ändert. So kann man nach *Mooney* und *Quaseem*<sup>10)</sup> die δ<sup>11</sup>B-Werte zur Diskussion relativer Donorstärken von N-Heteroaromaten heranziehen. Umgekehrt kann man aus <sup>14</sup>N-NMR-Daten auf das Akzeptorpotential des verwendeten Borans schließen. Allerdings weichen die von diesen Autoren beobachteten δ<sup>14</sup>N-Werte von Pyridin-Boranen oft recht erheblich von unseren ab.

Die Protonierung  $^{11,12)}$  und die N-Alkylierung  $^{13)}$  von Aminen und N-Heterocyclen führt zu einer beträchtlichen Hochfeldverschiebung des  $^{14}$ N-NMR-Signals. Sie wird vor allem einer Änderung des  $\sigma_p$ -Beitrags zur Abschirmung zugeschrieben  $^{14,15)}$ . Umfangreiche Untersuchungen, insbesondere von Witanowski et al. an Azinen und Azolen belegen den starken Einfluß dieses Terms auf  $\delta^{14}$ N  $^{16-21)}$ . Demzufolge ist für Amin-Boran-Addukte, insbesondere aber für N-Heterocyclen-Boran-Addukte, ebenfalls eine der Stärke der BN-Bindung, d. h. der Ladungsübertragung entsprechende Hochfeldverschiebung des  $^{14}$ N- und des  $^{11}$ B-NMR-Signals zu erwarten. In dieser sollten sich auch sterische Effekte, die nach  $^{11}$ B-NMR-Signals zu erwarten an Amin-Boranen steht hiermit im Einklang  $^{2)}$ .

#### Amin-Boran-Addukte

Amin-Borane sind leicht aus den Komponenten nach (1) darstellbar. Auf die Gleichgewichtslage nehmen zahlreiche Faktoren Einfluß<sup>23)</sup>. Die in den Tabb. aufgeführten Addukte wurden nach dieser einfachsten Methode erhalten und NMRspektroskopisch untersucht. Die Tab. I enthält die gemessenen chemischen Ver-

$$R_3B + NR_3 \rightleftarrows R_3B \cdot NR_3 \tag{1}$$

<sup>8)</sup> VIII. Mitteil.: H. Nöth und B. Wrackmeyer, Chem. Ber. 107, 3089 (1974), nachstehend. 9) B. F. Spielvogel, R. Nutt und R. Izydore, Abstracts 2nd Int. Meet. Boron Chem. 1974, 76.

<sup>10)</sup> E. F. Mooney und M. A. Quaseem, J. Inorg. Nucl. Chem. 30, 1439 (1968).

<sup>11)</sup> J. D. Baldeschwieler und E. W. Randall, Proc. Chem. Soc. (London) 1961, 303.

<sup>12)</sup> M. Witanowski, J. Amer. Chem. Soc. 90, 5683 (1968).

<sup>13)</sup> F. W. Wehrli, W. Giger und W. Simon, Helv. Chim. Acta 54, 229 (1971).

<sup>14)</sup> V. M. S. Gil und J. N. Murrell, Trans. Faraday Soc. 60, 248 (1964).

<sup>15)</sup> T. K. Wu, J. Chem. Phys. 49, 1139 (1968).

<sup>16)</sup> M. Witanowski, L. Stefaniak, H. Januszewski und G. A. Webb, Tetrahedron 27, 3129 (1971).

<sup>17)</sup> M. Witanowski und H. Januszewski, Mol. Phys. 23, 1071 (1972).

<sup>18)</sup> M. Witanowski und G. A. Webb, Nitrogen-NMR, Plenum Press, London 1973.

<sup>19)</sup> M. Witanowski, L. Stefaniak, H. Januszewski, J. Grabowski und G. A. Webb, Tetrahedron 28, 637 (1972).

<sup>&</sup>lt;sup>20)</sup> K. Hensen und K. P. Messer, Chem. Ber. 102, 957 (1969).

<sup>&</sup>lt;sup>21)</sup> H. Saito, J. Amer. Chem. Soc. 95, 324 (1973).

<sup>&</sup>lt;sup>22)</sup> H. C. Brown, J. Chem. Soc. 1956, 1248.

<sup>23)</sup> T. D. Coyle und F. G. A. Stone, Progr. Boron Chem. 1, 83 (1964).

schiebungen  $\delta^{14}$ N und  $\delta^{11}$ B von Amin-Boranen, Tab. 2 von Ammoniumsalzen. In Tab. 3 sind  $\delta^{13}$ C-Werte von Alkanen sowie die zum Vergleich erforderlichen BN-Verbindungen aufgeführt.  $\delta^{14}$ N-Werte von Aminen, ebenfalls für Vergleiche oder zur Standardisierung notwendig, finden sich in unseren früheren Arbeiten  $^{24,25)}$  sowie bei Witanowski und Januszewski  $^{26)}$ . Strukturparameter für Amine geben Roberts und Lichter  $^{27)}$  an. Einflüsse der Alkylgruppe auf  $\delta^{14}$ N werden wir daher nicht diskutieren.

Tab. 1. Kernresonanzdaten δ<sup>11</sup>B und δ<sup>14</sup>N von Amin-Boranen. Die Δ<sup>11</sup>B- und Δ<sup>14</sup>N-Werte sind chemische Verschiebungen, bezogen auf das dem Amin-Boran zugrunde liegende Boran bzw. Amin

|                                    | δ14N<br>[ppm]       | h <sub>1/2</sub><br>[Hz] | (ppm)  | $\Delta^{14}N$ [ppm] | Δ11Ba)<br>[ppm] | Lösungs-<br>mittel              |
|------------------------------------|---------------------|--------------------------|--------|----------------------|-----------------|---------------------------------|
| 1 H <sub>3</sub> N-BH <sub>3</sub> | +370                | 185                      | + 22.3 | -13                  | -⊱91.3          | Monoglym                        |
| $2 H_3N - B(CH_3)_3$               | +336                | 159                      | +8.7   | 47                   | +93.8           |                                 |
| 3 $H_3N - B(C_2H_5)_3$             | +352                | 465                      | +3.1   | -31                  | +89.6           | _                               |
| 4 $CH_3(H_2)N - BH_3$              | +367                | 295                      | +19.1  | -11                  | +89.1           | Monoglym                        |
| 5 $CH_3(H_2)N - B(CH_3)_3$         | +335                | 285                      | +5.5   | -43                  | +91.5           | Monoglym                        |
| 6 $CH_3(H_2)N - B(C_2H_5)_3$       | +343                | 470                      | +2.2   | 35                   | <b>38.7</b> →   | _                               |
| $7 (CH_3)_2HN-BH_3$                | +360                | 123                      | +13.5  | 11                   | +83.5           | Monoglym                        |
| 8 $(CH_3)_2HN-B(CH_3)_3$           | +344                | 217                      | +4.3   | <b>-27</b>           | +90.3           | _                               |
| 9 $(CH_3)_2HN-B(C_2H_5)_3$         | +356                | _                        | +1.2   | -15                  | <b>⊹87.7</b>    | _                               |
| 10 $(CH_3)_3N - BH_3$              | +340                | 100                      | +8.1   | -25                  | <b>→ 78.1</b>   | CH <sub>2</sub> Cl <sub>2</sub> |
| 11 $(CH_3)_3N - B(CH_3)_3$         | +345                | 155                      | -0.1   | 20                   | +85.9           | $CH_2Cl_2$                      |
| 12 $(CH_3)_3N - B(C_2H_5)_3$       | + 345               | _                        | -4.3   | - 20                 | +82.2           | $C_2H_2Cl_4$                    |
| 13 NH – BH <sub>3</sub>            | · <b>+377</b>       | 220                      | +15.8  | <b>-9</b>            | +85.8           | Monoglym                        |
| $14 \bigcirc NH - B(CH_3)_3$       | + 357               | 200                      | +6.1   | -29                  | ÷92.1           | _                               |
| 15 $NH - B(C_2H_5)_3$              | + 359               | 425                      | + 2.6  | -27                  | +89.1           | _                               |
| 16 NH - BH <sub>3</sub>            | +332                | 199                      | +14.7  | 11                   | +84.7           | CH <sub>2</sub> Cl <sub>2</sub> |
| $-17 (C_2H_5)_3N - BH_3$           | +335                | 212                      | ÷13.4  | - <del>i</del> ·12   | + 83.4          | _                               |
| 18 $C_2H_5(H_2)N - B(CH_3)_3$      | - <del> -</del> 322 | 260                      | +4.1   | -30                  | → 90.1          | _                               |
| 19 $iC_3H_7(H_2)N - B(CH_3)_3$     | +294                | 294                      | +5.0   | <b>-46</b>           | +91.0           |                                 |
| 20 $tC_4H_9(H_2)N - B(CH_3)_3$     | +286                | 180                      | +1.8   | -31                  | <b>87.8</b>     | _                               |

a) Verschiebungsdifferenz zu Boran, wobei für BH3 ein δ11B-Wert von ~70.0 angenommen wird 8).

Trägt man  $\delta^{14}$ N und  $\delta^{11}$ B entsprechender Amin-Borane gegeneinander auf, so ergibt sich eine annähernd lineare Beziehung (vgl. Abb. 1). Gleiches gilt auch für die Korrelation von  $\delta^{14}$ N und  $\delta^{11}$ B von Amin-Boranen mit  $\delta^{13}$ C von isoelektronischen Alkanen

<sup>&</sup>lt;sup>24)</sup> H. Nöth und B. Wrackmeyer, Chem. Ber. 106, 1145 (1973).

<sup>25)</sup> W. Beck, W. Becker, H. Nöth, B. Wrackmeyer, Chem. Ber. 105, 2883 (1972).

<sup>&</sup>lt;sup>26)</sup> M. Witanowski und H. Januszewski, Can. J. Chem. 47, 1321 (1969).

<sup>&</sup>lt;sup>27)</sup> R. L. Lichter und J. D. Roberts, J. Amer. Chem. Soc. 94, 3495 (1972).

|                                                  | •               |                          |                            |
|--------------------------------------------------|-----------------|--------------------------|----------------------------|
|                                                  | 814Na)<br>[ppm] | h <sub>1/2</sub><br>[Hz] | Δ <sup>14</sup> N<br>[ppm] |
| NH <sub>4</sub> +                                | +354.526)       | 5                        | -28.5                      |
| CH <sub>3</sub> NH <sub>3</sub> +                | +35126)         | 30                       | -27                        |
| $(CH_3)_2NH_2^+$                                 | + 348 26)       | 40                       | -23                        |
| $(CH_3)_3NH^+$                                   | +33426)         | 30                       | -31                        |
| $(CH_3)_4N^+$                                    | +333.526)       | 6.5                      | -31.5                      |
| $C_2H_5NH_3^+$                                   | +33626)         | 40                       | -16                        |
| $(C_2H_5)_2NH_2^+$                               | $+320^{26}$     | 50                       | -16                        |
| $(C_2H_5)_3NH^+$                                 | .+.31426)       | 50                       | -9                         |
| $(C_2H_5)_4N^+$                                  | +31126)         | 10                       | -12                        |
| iC <sub>3</sub> H <sub>7</sub> NH <sub>3</sub> + | +329            | _                        | -11                        |
| $(iC_3H_7)_2NH_2^+$                              | + 305           | _                        | -3                         |
| tC.H.NH.+                                        | -l- 31426)      | 60                       | <b>+3</b>                  |

Tab. 2.  $\delta^{14}$ N-Werte und Verschiebungsdifferenzen  $\Delta^{14}$ N von Ammonium-Ionen

a) Bezüglich weiterer Daten verweisen wir auf Lit. 18), S. 181.

| Tah. | 3. | δ13C-Dater | ı von | Alkanen |
|------|----|------------|-------|---------|
|      |    |            |       |         |

| Alkan                              | [bbm]<br>913C | zu vergleichen mit:                                                     |
|------------------------------------|---------------|-------------------------------------------------------------------------|
| C <sub>6</sub> H <sub>6</sub>      | 0.0           | -                                                                       |
| CH <sub>4</sub>                    | +130.8a)      | $NH_4^+; BH_4^-$                                                        |
| $H_3C-CH_3$                        | +122.8a)      | $H_3N-CH_3^+; H_3N-BH_3$                                                |
| $H_3C-CH_2-CH_3$                   | +113.1a       | $H_3N-CH_2-CH_3^+; H_3C-NH_2-BH_3$                                      |
| $H_3C-CH_2-CH_3$                   | $+112.6^{a}$  | $H_2N(CH_3)_2^+; H_3C-NH_2-BH_3$                                        |
| (H <sub>3</sub> C) <sub>3</sub> CH | +104.5a       | $HN(CH_3)_3^+; (H_3C)_2NH-BH_3$                                         |
| $(H_3C)_2CH-CH_3$                  | +104.4a       | $H_3N-iC_3H_7^+$ ; $(H_3C)_2NH-BH_3$                                    |
| $(H_3C)_4C$                        | +100.5b)      | $N(CH_3)_4^+$ ; $B(CH_3)_4^-$ ; $(CH_3)_3N - BH_3$ ; $H_3N - B(CH_3)_3$ |
| $(H_3C)_3C - CH_3$                 | +96.96)       | $H_3N-tC_4H_9^+$ ; $H_3N-B(CH_3)_3$ , $(CH_3)_3N-BH_3$                  |
| $H_3C-CH_2-CH_2-CH_2-CH_3$         | +94.46)       | $H_2N(C_2H_5)_2^+$                                                      |
| $(H_3C-CH_2)_3CH$                  | +86.16)       | $HN(C_2H_5)_3^+$                                                        |
| $(H_3C-CH_2)_4C$                   | +91.46)       | $N(C_2H_5)_4^+$ ; $B(C_2H_5)_4^-$ ; $H_3C-NH_2-B(C_2H_5)_2$             |
| $(H_3C-CH_2)_3C-CH_3$              | +103.36)      | $H_3N-B(C_2H_5)_3$ ; $(C_2H_5)_3N-BH_3$                                 |
| $(H_3C-CH_2)_3C-CH_3$              | +93.76)       | $(C_2H_5)_3N - BH_3$ ; $H_3N - B(C_2H_5)_3$                             |
| $H_3C-CH_2-C(CH_2-CH_3)_3$         | +101.4b)      | $H_3C - NH_2 - B(C_2H_5)_3$                                             |
| $H_3C-CH_2-C(CH_3)_3$              | +92.06)       | $H_3C - NH_2 - B(CH_3)_3$                                               |
| $H_3C-CH_2-C(CH_3)_3$              | +98.26)       | $H_3C-NH_2-B(CH_3)_3$                                                   |
| $(H_3C)_2CH-CH_2-CH(CH_3)_2$       | +79.56)       | $H_2N(iC_3H_7)_2^+$                                                     |
| $(H_3C)_2CH-CH_2-C(CH_3)_3$        | +97.66)       | $iC_3H_7-NH_2-B(CH_3)_3$                                                |
| $(H_3C)_2CH-CH_2-C(CH_3)_3$        | +75.26)       | $iC_3H_7 - NH_2 - B(CH_3)_3$                                            |
| $(H_3C)_3C-CH_2-C(CH_3)_3$         | +96.16)       | $tC_4H_9-NH_2-B(CH_3)_3$                                                |
| $(H_3C)_3C-CH_2-C(CH_3)_3$         | +72.06)       | $tC_4H_9 - NH_2 - B(CH_3)_3$                                            |
| $H_3C-CH_2-CH_2-C(CH_3)_3$         | +81.26)       | $C_2H_5-NH_2-B(CH_3)_3$                                                 |

Tab. 3 (Fortsetzung)

| Alkan                            | δ13C<br>[ppm]       | zu vergleichen mit:                |  |
|----------------------------------|---------------------|------------------------------------|--|
| $H_3C-CH_2-CH_2-C(CH_3)_3$       | +97.9 b)            | $C_2H_5-NH_2-B(CH_3)_3$            |  |
| $(H_3C)_2CH - C(CH_3)_3$         | +-95.8ы)            | (CH3)2NH - B(CH3)3                 |  |
| $(H_3C)_2CH-C(CH_3)_3$           | -}- <b>90.</b> 6 b) | $(CH_3)_2NH - B(CH_3)_3$           |  |
| $(H_3C)_3C - C(CH_3)_3$          | +93.5b)             | $(CH_3)_3N - B(CH_3)_3$            |  |
| CH <sub>3</sub>                  | +124.3 c)           | N BH3                              |  |
| CH,                              | + 126.0°            | H<br>BH <sub>3</sub>               |  |
| C(CH <sub>3</sub> ) <sub>3</sub> | + 104.4°            | N B(CH <sub>3</sub> ) <sub>3</sub> |  |
| $C_{C(CH_3)_3}^H$                | 100.0 c)            | N B(CH <sub>3</sub> ) <sub>3</sub> |  |

<sup>a) E. G. Paul und D. M. Graut, J. Amer. Chem. Soc. 86, 2984 (1964).
b) P. Lindemann und J. Q. Adams, Anal. Chem. 43, 1245 (1971).
c) Abgeschätzt aus den 8<sup>13</sup>C-Werten von</sup> 

$$C_{CH_2-C_6H_5}^{H}$$
 (+117.44) und  $H_3C-CH_2-C_6H_5$  (+113.34).

(vgl. Abb. 2 und 3). Den gleichartigen Substituenteneinfluß auf die einzelnen Kerne spiegelt auch die Korrelation von  $\delta^{14}$ N der Ammoniumsalze mit  $\delta^{13}$ C von Alkanen wieder (vgl. Abb. 4).

Im Bereich der Amin-Borane liegt die Verbindung (CH<sub>3</sub>)<sub>3</sub>B-N(CH<sub>3</sub>)<sub>3</sub> (11) besonders weit von der δ14N/δ11B-Korrelationsgeraden entfernt (Abb. 1). Die Abweichung signalisiert sterische Effekte, insbesondere hier wohl die B-Spannung 22). Allerdings zeigen die mit der Boran-Anlagerung an Ammoniak und aliphatische Amine einhergehenden Verschiebungen des <sup>14</sup>N-NMR-Signals (vgl. die  $\Delta$ <sup>14</sup>N-Werte in Tab. 1) nur z. T. sterische Effekte an. δ14N wird bekanntlich von einer Reihe nicht notwendigerweise gleichsinnig wirkender Faktoren bestimmt 26). Einfacher scheinen hingegen die <sup>14</sup>N-NMR-Daten von Azinen und Azolen interpretierbar zu sein <sup>18</sup>).



Abb. 1. Korrelation von δ<sup>11</sup>B und δ<sup>14</sup>N von Amin-Boran-Addukten



Abb. 2. Korrelation von  $\delta^{14}N$  von Amin-Boran-Addukten mit  $\delta^{13}C$  von isoelektronischen Alkanen



Abb. 3. Korrelation von δ<sup>11</sup>B und δ<sup>13</sup>C von Amin-Boran-Addukten mit isoelektronischen und isosteren Alkanen



Abb. 4. Korrelationen von  $\delta^{14}N$  verschiedener Ammoniumsalzreihen mit  $\delta^{13}C$  entsprechender Alkane

#### Boran-Addukte von Azinen und Azolen

Bei Azinen und Azolen trägt das freie Elektronenpaar am N-Atom, das nicht zur Aufrechterhaltung des aromatischen Systems im Sinne von *Hückel* benötigt wird, kräftig zum  $\sigma_p$ -Term der Abschirmung bei  $^{14-16}$ ). Beansprucht man dieses Elektronenpaar durch Boran-Anlagerung, dann ändert sich die Abschirmung des Stickstoffs

beachtlich. Werden die <sup>14</sup>N-NMR-Signale bei den Amin-Boranen in der Regel um 10-30 ppm zu tieferem Feld verschoben, finden sich die der Boran-Addukte von N-Heterocyclen um 40-80 ppm bei höherem Feld (vgl. die Daten der Tab. 5). Die zur Ermittlung der Verschiebungsdifferenzen  $\Delta^{14}$ N notwendigen  $\delta^{14}$ N-Daten sind in der Tab. 4 zusammengestellt.

Tab. 4. δ14N-Werte und Halbhöhenbreiten von N-Heterocyclen

| Verbindung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 814N<br>[ppm]                                                                            | h <sub>1/2</sub><br>[Hz]  | Lösungs-<br>mittel <sup>a)</sup> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------|----------------------------------|
| 21 (N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +62<br>+6029)<br>+6816)                                                                  | 120<br><br>260            | Ä<br>-<br>NM                     |
| $\mathbf{z} = \mathbf{z} = \mathbf{z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +54                                                                                      | 232                       | Ä                                |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +-39<br>+-4216)                                                                          | 190<br>220                | Ä<br>DMF                         |
| u On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +7216)                                                                                   | 700<br>650                | Ä<br>NM                          |
| 25 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +6816)                                                                                   | 680                       | NM                               |
| 26 CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +67                                                                                      | 832                       | _                                |
| $n \bigcap_{i=1}^{CH_i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +70                                                                                      | _                         | мс                               |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +92<br>+9416)                                                                            | 865<br>820                | В<br>МВ                          |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | + 176<br>+ 171 <sup>19)</sup><br>+ 170<br>+ 171 <sup>19)</sup><br>+ 168.3 <sup>21)</sup> | 605<br>1200<br>473<br>600 | THF<br>D<br>MA<br>MA<br>AC       |
| . 30 (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +215 (a)<br>+115 (b)<br>+221 (a) 19)<br>+123 (b) 19)                                     | 160<br>390<br>150<br>325  | -<br>-                           |
| tal °,<br>CH₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +218 (a) 19)<br>+116 (b)<br>+214.0 (a) 21)<br>+120.6 (b)                                 | 125<br>300<br><br>-       | TC<br>AC                         |
| (a) CH <sub>3</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + 216 (a)<br>+ 117 (b)                                                                   | 270<br>600                | _                                |
| 32 \( \begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(\begin{picture}(p | +197 (a)<br>+125 (b)                                                                     | 212<br>600                | -                                |
| 33 $\left(\sum_{b=1}^{N(b)} \sum_{i=1}^{N(b)} \left(CH_3\right)_3\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +164 (a, b)                                                                              | 600                       | -                                |

Tab. 4 (Fortsetzung)

| Verbindung                                                                                       | 8 <sup>14</sup> N<br>[ppm]              | h <sub>1/2</sub><br>[Hz] | Lösungs<br>mittel <sup>a)</sup> |
|--------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------|---------------------------------|
|                                                                                                  | +140                                    | 880                      | ÄA                              |
| H N                                                                                              | +129                                    | 705                      | THF                             |
| 7                                                                                                | +13519)                                 | 730                      | D                               |
| H                                                                                                | $+135^{19})$<br>$+126^{21})$            | 670                      | MA                              |
|                                                                                                  | + 120***                                | _                        | AC                              |
|                                                                                                  | $+178 (a)^{19}$                         | 142                      | TC                              |
|                                                                                                  | +68  (b)                                | 325                      |                                 |
| 35 No.                                                                                           | $+178 (a)^{19}$                         | 185                      | TC/MA                           |
| 35 (N) (b) (CH <sub>3</sub>                                                                      | +78 (b)                                 | 385                      |                                 |
| CH <sub>3</sub>                                                                                  | $+171.3 (a)^{21}$                       | _                        | A                               |
|                                                                                                  | +69.1 (b)                               | _                        | AC                              |
| 36 N (b)                                                                                         | +158 (a)                                | 160                      |                                 |
| (a) N                                                                                            | -+ 55 (b)                               | 535                      |                                 |
| Si(CH <sub>3</sub> ) <sub>3</sub> 37 (c) N \( \bigcap \) N(b) \( \bigcap \) N(b) \( \bigcap \) H | +126                                    | 465                      | THF                             |
| 37 (c) N -7                                                                                      | +125                                    | 705                      | H <sub>2</sub> O                |
| N(P)                                                                                             | -1.13419)                               | 540                      | D                               |
| ) [ (*) 1, (*)                                                                                   | +13619)                                 | 940                      | MA                              |
|                                                                                                  | +132.221)                               | _                        | AC                              |
|                                                                                                  | $+170 \text{ a})^{19}$                  | 160                      |                                 |
|                                                                                                  | +126  b, c                              | 460                      |                                 |
| 38 'c' \ \                                                                                       | +170 (a) <sup>19)</sup>                 | 170                      | Α                               |
| (a) N (b)                                                                                        | +130 (b, c)                             | 550                      |                                 |
| CH <sub>3</sub>                                                                                  | +149.3 (a) <sup>21)</sup>               | _                        | 4.0                             |
|                                                                                                  | + 48.1 (b)                              | _                        | AC                              |
|                                                                                                  | +116.5 (c)                              | _                        |                                 |
| 39 (c) N(b)                                                                                      | +147(a)                                 | _                        | _                               |
| (a) }\<br>St(CH3)3                                                                               | +101 (b, c)                             |                          |                                 |
| 51(0/13/3                                                                                        | , , , , , , , , , , , , , , , , , , , , |                          |                                 |
| 40 (N)                                                                                           | +12419)                                 | 106                      | TC                              |
|                                                                                                  | + 5619)                                 | 150                      | _                               |
| 41 (S)                                                                                           | +6819)                                  | 240                      | MA                              |
| N                                                                                                | 219)                                    | 220                      | _                               |
| 42 /=)                                                                                           | <b>4</b> 19)                            | 290                      | DMF                             |
| Z'30                                                                                             | 4 619)                                  | 335                      | MA                              |
| 43 (=)                                                                                           | +8019)                                  | 108                      | _                               |
| ** ( )s                                                                                          | +8519)                                  | 135                      | MA                              |
| N                                                                                                | +80                                     | 150                      | AC                              |

a) Ä = Diäthyläther
NM = Nitromethan
DMF = N,N-Dimethylformamid
MC - Methylenchlorid
THF = Tetrahydrofuran

B · Benzol

MB · Methylenbromid

MA · Methylalkohol

ÄA = Äthylalkohol

D · Dioxan

TC = Tetrachlorkohlenstoff

Tab. 5. Kernresonanzdaten und Verschiebungsdifferenzen von Boran-Addukten an N-Heterocyclen

|                                                        |               | 0,0                      |               |               |                 |                                                |
|--------------------------------------------------------|---------------|--------------------------|---------------|---------------|-----------------|------------------------------------------------|
| Verbindung                                             | δ14N<br>[ppm] | h <sub>1/2</sub><br>[Hz] | δ11B<br>[ppm] | Δ14N<br>[ppm] | [ppm]<br>Δ11Ba) | Lösungs-<br>mittel                             |
| 44 ()<br>HH <sub>3</sub>                               | +136          | 320                      | +11.8         | + 74          | +81.8           | CH <sub>2</sub> Cl <sub>2</sub>                |
| 45 (N<br>B(CH <sub>3</sub> ) <sub>3</sub>              | + 108         | 324                      | 0.0           | +44           | +86.0           | CH <sub>2</sub> Cl <sub>2</sub>                |
| 46 N<br>B(C <sub>2</sub> H <sub>6</sub> ) <sub>3</sub> | +108          | 750                      | -2.2          | +44           | +84.3           | O(C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> |
| 47 (N)<br>BBr <sub>3</sub>                             | +148          | 150                      | +7.2          | +86           | +44.6           | Toluol                                         |
| 48 (C <sub>2</sub> H <sub>6</sub> ) <sub>3</sub>       | +80           | -                        | 7.6           | +41           | +78.9           | CH <sub>2</sub> Cl <sub>2</sub>                |
| .я (°,<br>В(С,Нµ),                                     | -             | -                        | -4.3          | _             | +82.2           | CH <sub>2</sub> Cl <sub>2</sub>                |
| SO H <sub>3</sub> C NCH <sub>3</sub>                   | +142          | 145                      | +17.8         | +88           | +87.8           | CH <sub>2</sub> Cl <sub>2</sub>                |
| 51 )BH,                                                | +135          | 360                      | +12.9         | +63           | +82.9           | CH <sub>2</sub> Cl <sub>2</sub>                |
| 52 N<br>B(CH <sub>3</sub> );                           | +90           | 360                      | -12.3         | +18           | +73.7           | CH <sub>2</sub> Cl <sub>2</sub>                |
| 53 B(C <sub>2</sub> t1 <sub>8</sub> ) <sub>3</sub>     | +89           | 607                      | -16.5         | +17           | +70.0           | O(C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> |
| 54 N N N N N N N N N N N N N N N N N N N               | +154          | _                        | +8.8          | +87           | +78.8           | CH <sub>2</sub> Cl <sub>2</sub>                |
| 55 N <sub>BH3</sub>                                    | +150          | 900                      | +11.5         | +82           | +81.5           | CH <sub>2</sub> Cl <sub>2</sub>                |
| 56 N <sub>B(CH<sub>3</sub>)<sub>3</sub></sub>          | +108          | 570                      | +4.0          | +40           | +90.0           | CH <sub>2</sub> Cl <sub>2</sub>                |
| 57 (C <sub>2</sub> H <sub>8</sub> )                    | + 109         | 690                      | -2.1          | +41           | +84.4           | O(C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> |
| SS CCC CH3                                             | + 148         | -                        | +11.6         | + 78          | +81.6           | CH <sub>2</sub> Cl <sub>2</sub>                |

Tab. 5 (Fortsetzung)

|          |                                                                      | δ14N                   | h <sub>1/2</sub>  | 811B      | Δ14N            | Δ11Ba)               | T 2                             |
|----------|----------------------------------------------------------------------|------------------------|-------------------|-----------|-----------------|----------------------|---------------------------------|
| Verl     | bindung<br>                                                          | [ppm]                  | [Hz]              | [ppm]     | [ppm]           | [ppm]                | Lösungs-<br>mittel              |
| 59       | $\text{CH}_3$ $\text{B(C}_2\text{H}_4)_3$                            | +81                    |                   | -16.5     | +11             | + 70.0               | CH <sub>2</sub> Cl <sub>2</sub> |
| 4        | (a) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                             | + 205 (a)<br>(b)       | -                 | +19.2     | -               | +89.2                | CH <sub>2</sub> Cl <sub>2</sub> |
| 61       | B(CH <sub>3</sub> ) <sub>3</sub>                                     | +207 (a)<br>+164 (b)   | 237               | +6.0      | -               | +92.0                | CH₂Cl₂                          |
| 62       | B(C <sub>4</sub> H <sub>9</sub> ),                                   | + 190 (a)<br>+ 144 (b) | _<br>_            | +2.1      | _               | - <del> </del> -88.6 | CH <sub>2</sub> Cl <sub>2</sub> |
| <b>S</b> | (a) CH3                                                              | +214 (a)<br>+173 (b)   | 260<br>172        | +18.8     | -1<br>+58       | +88.8                | CH <sub>2</sub> Cl <sub>2</sub> |
| 64       | B(CH <sub>3</sub> ) <sub>4</sub>                                     | +217 (a)<br>+149 (b)   | <del>-</del><br>- | -+-5.2    | +2<br>+34       | +91.2                | CH <sub>2</sub> Cl <sub>2</sub> |
| 65       | B(C <sub>2</sub> H <sub>6</sub> ) <sub>3</sub>                       | +202 (a)<br>+150 (b)   | <del></del>       | +3.2      | -13<br>+35      | +89.7                | CH <sub>2</sub> Cl <sub>2</sub> |
| 66       | (a) N (b) C <sub>2</sub> H <sub>6</sub>                              | + 192 (a)<br>+ 176 (b) | _                 | +18.8     | -5<br>+51       | +88.8                | CH <sub>2</sub> Cl <sub>2</sub> |
| 67       | $\bigcap_{\substack{(n) \ 1 \\ (n) \ 1 \\ C_2H_6}}^{N(b)}$           | + 196 (a)<br>+ 132 (b) | 160<br>           | +5.9<br>- | -5<br>+7        | +91.9                | CH <sub>2</sub> Cl <sub>2</sub> |
| 68       | B(C <sub>2</sub> H <sub>8</sub> ) <sub>3</sub> (a) ( 2H <sub>8</sub> | + 193 (a)<br>- (b)     |                   | +1.2      | - <b>4</b><br>- | +87.7                | -                               |
| ø        | CH <sub>3</sub>                                                      | +204 (a)<br>+173 (b)   | _                 | +19.7     | -12<br>+56      | +89.7                | CH <sub>2</sub> Cl <sub>2</sub> |
| 70       | B(CH <sub>3</sub> ),                                                 | +216 (a)<br>+135 (b)   | =                 | +5.2      | 0<br>+18        | +91.6                | CH <sub>2</sub> Cl <sub>2</sub> |
|          |                                                                      |                        |                   |           |                 |                      |                                 |

Tab. 5 (Fortsetzung)

| 110.5 [10.35.21.8]                         |                                                |                                    |                          |       |                  |                 |                                                |  |
|--------------------------------------------|------------------------------------------------|------------------------------------|--------------------------|-------|------------------|-----------------|------------------------------------------------|--|
| Verbindun                                  | 3                                              | 814N<br>[ppm]                      | h <sub>1/2</sub><br>[Hz] | δ11B  | Δ14N<br>[ppm]    | Δ11Ba)<br>[ppm] | Lösungs-<br>mittel                             |  |
| 71 F N(b)                                  | (C <sub>2</sub> H <sub>8</sub> ) <sub>3</sub>  | + 198 (a)<br>+ 149 (b)             | _                        | +4.6  | -18<br>+32       | +91.1           | CH <sub>2</sub> Cl <sub>2</sub>                |  |
| 72 (N) |                                                | +171 (a)<br>+201 (b)               | _                        | +19.6 | +7<br>+37        | +89.6           | CH <sub>2</sub> Cl <sub>2</sub>                |  |
| 7.3 E                                      |                                                | +142 (a)<br>+193 (b)               | -                        | +5.6  | -22<br>+29       | +91.6           | CH <sub>2</sub> Cl <sub>2</sub>                |  |
|                                            | B(C <sub>2</sub> H <sub>8</sub> ) <sub>3</sub> | +151 (a)<br>+189 (b)               | -                        | +2.7  | -13<br>+25       | +89.2           | O(C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> |  |
| 75 (a) N                                   | ВН <sup>3</sup>                                | +153 (a)<br>+120 (b)               | _                        | +18.4 | -                | +88.4           | CH <sub>2</sub> Cl <sub>2</sub>                |  |
| 76 (a) 1 H                                 | B(CH3)*                                        | +152 (a)<br>+86 (b)                | _                        | +3.6  | +23<br>-43       | +89.6           | CH <sub>2</sub> Cl <sub>2</sub>                |  |
| 77 (a) N                                   | BH <sup>3</sup>                                | + 169 (a)<br>+ 141 (b)             | 320<br>320               | +19.6 | -9<br>+73        | +89.6           | THF                                            |  |
| 78                                         | CH3 B(CH3)3                                    | + 162 (a)<br>82 (b)                |                          | +1.5  | -16<br>+14       | +87.5           | -                                              |  |
| 79                                         | Si(CH <sub>3</sub> ) <sub>3</sub>              | + 135 (a, b)                       | 525                      | +17.4 | -23<br>+80       | +87.4           | CH <sub>2</sub> Cl <sub>2</sub>                |  |
| 80<br>H <sub>2</sub> i                     | BH.                                            | +109                               | 566                      | +8.7  | _                | -               | CH <sub>2</sub> Cl <sub>2</sub>                |  |
| (CH <sub>3</sub> )ع<br>81                  | H<br>(c) N N (b)<br>(a) C H <sub>3</sub>       | + 160 (a)<br>+ 68 (b)<br>+ 134 (c) | -                        | +4.8  | -10<br>-58<br>+8 | +90.8           | CH₂Cl₂                                         |  |
| 82                                         | CH <sub>3</sub><br>NS<br>NH <sub>3</sub>       | +132                               | 180                      | +15.4 | +52              | -+-85.4         | CH <sub>2</sub> Cl <sub>2</sub>                |  |
| 83                                         | NS<br>NG<br>B(CH <sub>3</sub> ) <sub>3</sub>   | +96                                | 182                      | -1.3  | + 16             | +84.7           | _                                              |  |

a) Für BH3 wurde ein  $\delta^{11}B$ -Wert von --70.0 angenommen 81.

Tab. 6. δ14N-Werte N-protonierter und N-methylierter Kationen von N-Heterocyclen

| Verbindung                                                             | 814N<br>[ppm]        | h <sub>1/2</sub><br>[Hz] | $\Delta^{14}N$ [ppm] | Lösungs-<br>mittel              |
|------------------------------------------------------------------------|----------------------|--------------------------|----------------------|---------------------------------|
| 24 Ci                                                                  | +181=)               | 20                       | +118                 | H₂O/HCl                         |
| $ \begin{array}{c} \mathbf{as} \\                                    $ | +177                 | 28                       | +115                 | H <sub>2</sub> O                |
| 86 N                                                                   | +94                  | _                        | +55                  | H₂O/HCI                         |
| 87 H <sub>3</sub> C (H <sub>3</sub> ) CH                               | +179                 | 168                      | +125                 | H <sub>2</sub> O/HC1            |
| <b>m</b> C1                                                            | +185•)               | 50                       | +113                 | H <sub>2</sub> O/HCl            |
| <b>₽</b> CH <sub>3</sub> ] J                                           | +185                 | 252                      | +113                 | H <sub>2</sub> O                |
| <b>10 11 11 11 11 11 11</b>                                            | + 195                | 228                      | +128                 | H₂O/HCI                         |
| 4 CX                                                                   | +188*)               | 55                       | +120                 | H <sub>2</sub> O/HCI            |
| 2 CH <sub>3</sub> CH <sub>3</sub>                                      | +180                 | 760                      | +110                 | H₂O/HCI                         |
| 93 (N) c1                                                              | +205                 | 164                      | _                    | H <sub>2</sub> O/HCl            |
| 94 $\begin{pmatrix} CH_3 \\ N \\ CH_3 \end{pmatrix}$ .1                | +216                 | 387                      | +1 (a)<br>+101 (b)   | CH <sub>2</sub> Cl <sub>2</sub> |
| 95 $\begin{bmatrix} CH_3 \\ N(b) \\ CH_3 \end{bmatrix} = J$            | +199                 | 230                      | -17 (a)<br>+82 (b)   | H <sub>2</sub> O                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                   | +187                 | 340                      | -10 (a)<br>+62 (b)   | CH <sub>2</sub> Cl <sub>2</sub> |
| 97                                                                     | +176 (a)<br>+212 (b) | <del>-</del>             | +10 (a)<br>+48 (b)   | CH₂Cl₂                          |
| <b>88</b>                                                              | +187                 | 702                      | -                    | H <sub>2</sub> O/HCI            |

|                                                                | 1 au. o (Fortsetzung)                 |                          |                            |                                                                       |  |  |  |
|----------------------------------------------------------------|---------------------------------------|--------------------------|----------------------------|-----------------------------------------------------------------------|--|--|--|
| Verbindung                                                     | 814N<br>[ppm]                         | h <sub>1/2</sub><br>[Hz] | Δ <sup>14</sup> N<br>[ppm] | Lösungs-<br>mittel                                                    |  |  |  |
| 69 (P) CH <sup>3</sup> 1                                       | +170                                  | 520                      | -8 (a)<br>+102 (b)         | H <sub>2</sub> O                                                      |  |  |  |
| 160 (a) (b) ] <sub>2</sub> SO <sub>4</sub>                     | +203.4 (a)<br>+46.9 (b)<br>+203.0 (c) | -                        | -                          | H <sub>2</sub> SO <sub>4</sub> /<br>CF <sub>3</sub> CO <sub>2</sub> H |  |  |  |
| 101 (NS) J                                                     | +171                                  | 164                      | +91                        | D <sub>2</sub> O                                                      |  |  |  |
| 102 $\left[\begin{array}{c} I_{N} \\ N \end{array}\right]$ L.i | +111                                  | _                        | -                          | THF                                                                   |  |  |  |

Tab. 6 (Fortsetzung)

#### Azine und Azin-Borane

Die Anlagerung von BH<sub>3</sub>, B(CH<sub>3</sub>)<sub>3</sub> und B(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub> an Azine und Azole zieht, wie die Daten der Tab. 5 zeigen, eine wesentlich geringere Hochfeldverschiebung des 14N-NMR-Signals nach sich als N-Protonierung oder N-Methylierung (vgl. Werte in Tab. 6). Die δ¹4N-Werte für die BR<sub>3</sub>-Addukte von Pyridin, Chinolin und Isochinolin liegen immer zwischen den δ14N-Werten der N-Heteroaromaten und deren N-protonierten bzw. N-methylierten Kationen 28). Die Abb, 5 illustriert diesen Punkt am Beispiel der Pyridin- und Imidazol-Verbindungen. In den Boran-Addukten wird die Elektronendichte am Stickstoff größer als in den Kationen sein, d. h. in den δ<sup>14</sup>N-Werten drückt sich die Beanspruchung des freien Elektronenpaars am Stickstoff aus. Je schwächer ein Boran von N-Heteroaromaten gebunden wird, desto geringer sollte die Hochfeldverschiebung, ausgedrückt in der Verschiebungsdifferenz  $\Delta^{14}N$ , sein. Da aber die Übernahme negativer Ladung vom Boratom zusammen mit der Tetrakoordination des Bors eine Hochfeldverschiebung des <sup>11</sup>B-NMR-Signals bewirkt, wird man aus den Δ<sup>1</sup>B-Werten der einzelnen Borane — vergleichbar sind naturgemäß zunächst immer nur Addukte eines Borans - einerseits die relative Donorwirkung des N-Heterocyclus und andererseits qualitativ die Stärke der BN-Bindung entnehmen können<sup>30)</sup>.

a) M. Witanowski, J. Amer. Chem. Soc. 90, 5683 (1968).

<sup>28)</sup> Dies gilt auch für die N-Oxide, z. B. Pyridin-N-oxid:  $\delta^{14}N + 100 \text{ ppm}^{29}$ .

<sup>29)</sup> D. Herbison-Evans und R. E. Richards, Mol. Phys. 8, 19 (1964).

<sup>30)</sup> Die δ11B-Werte von Amin-Boranen liegen ebenfalls immer zwischen δ11B von Boranen und Boraten BR<sub>4</sub>.



Abb. 5. Änderung der chemischen Verschiebung δ14N und δ11B beim Übergang

$$N \rightarrow N-BR_3 \rightarrow N-R$$
 und  $R_3 \rightarrow R-R$  und  $R_3 \rightarrow R-R$ 

N-Protonierung und N-Methylierung des Pyridins (84, 85) ergibt praktisch gleiche Abschirmungsgewinne Δ14N von 118 bzw. 115 ppm. Die Anlagerung von BH3 (44) verschiebt das <sup>14</sup>N-NMR-Signal nur mehr um 74 ppm zu höherem Feld, während B(CH<sub>3</sub>)<sub>3</sub> und B(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub> (45, 46) mäßige 44 ppm erbringen. BBr<sub>3</sub>, eine im Vergleich zu BH<sub>3</sub> und BR<sub>3</sub> stärkere Lewis-Säure, belegt in 47 mit beachtlichen 86 ppm die qualitative Relation zwischen Säure-Stärke und Verschiebungsdifferenz. Andererseits zeigen die  $\Delta^{11}$ B-Daten, daß man sie nicht oder nur bedingt zu Aussagen über relative Aciditäten heranziehen darf: BH3 und die schwächeren Lewis-Säuren BR3 weisen größere  $\Delta^{11}$ B-Werte auf als die stärkere Säure BBr<sub>3</sub>. Aber selbst innerhalb einer Reihe, z. B. der BH<sub>3</sub>-Addukte von Pyridin (44), 2,6-Dimethylpyridin (50), Chinolin (51), 8-Methylchinolin (54), Isochinolin (55) und 3-Methylisochinolin (58) laufen  $\Delta$ <sup>14</sup>N und  $\Delta^{11}$ B nicht parallel. Die gleichartigen sterischen Verhältnisse für die BH<sub>3</sub>-Anlagerung an Pyridin und Isochinolin entsprechen gleichen Abschirmungsgewinnen  $\Delta^{11}B$ . Dies gilt auch für die  $B(CH_3)_3$ - und  $B(C_2H_5)_3$ -Addukte von Pyridin (52, 53), Pyrazin (48, 49) und Isochinolin (56, 57). Der bei der Protonierung von 2,6-Lutidin (87) und Isochinolin (91) im Vergleich zu Pyridin (84) bzw. Chinolin (88) gefundene größere Abschirmungsgewinn schlägt auch auf die entsprechenden BH3-Addukte durch. Aus den  $\Delta^{11}$ B-Werten der BH<sub>3</sub>-Addukte kann man schließen, daß die Anlagerung von BH<sub>3</sub> an das im Vergleich zu Pyridin basischere 2,6-Lutidin sterisch ungehindert ist, während der kleinere  $\Delta^{11}$ B-Wert von 8-Methylchinolin-Boran im Vergleich zu Chinolin-Boran sterische Einflüsse andeutet<sup>31</sup>).

Wählt man statt der sterisch relativ anspruchslosen Lewis-Säure BH<sub>3</sub> die sperrigen Trialkylborane B(CH<sub>3</sub>)<sub>3</sub> und B(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>, dann werden nichtbindende Wechselwirkungen gravierend. In Abwesenheit zusätzlicher sterischer Effekte entsprechen die  $\Delta^{14}$ N-und  $\Delta^{11}$ B-Daten der BR<sub>3</sub>-Addukte von Pyridin, Pyrazin und Isochinolin einander weitgehend. Der Wasserstoff in 8-Position des Chinolins erschwert jedoch bereits die Anlagerung von B(CH<sub>3</sub>)<sub>3</sub> und B(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>. Die  $\Delta^{14}$ N-Werte für 52 und 53 sind dementsprechend klein im Gegensatz zu recht beträchtlichen  $\Delta^{11}$ B-Werten, die jedoch nicht mehr an die der Pyridin- oder Isochinolin-Addukte (45, 46, 56, 57) herankommen. Die Methylgruppe in 8-Methylisochinolin blockiert die Wechselwirkung mit B(CH<sub>3</sub>)<sub>3</sub> bereits so stark, daß auf Grund des hohen B(CH<sub>3</sub>)<sub>3</sub>-Dampfdrucks bei der Meßtemperatur (30°C) auf die NMR-Messung verzichtet werden mußte<sup>32</sup>). Gleiches gilt auch für das B(CH<sub>3</sub>)<sub>3</sub>-Addukt des 3-Methylisochinolins, dessen B(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>-Addukt (59) die schwache BN-Bindung durch ein sehr kleines  $\Delta^{14}$ N (+11 ppm) demonstriert.

#### Azole und Azol-Borane

Pyrrole sind bekanntlich kaum basisch; dementsprechend ließ sich auch keine Wechselwirkung zwischen N-Methylpyrrol und  $B(CH_3)_3$  bzw.  $B(C_2H_5)_3$  NMR-spektroskopisch feststellen. Falls Azole Addukte bilden, kann man aus diesem Ergebnis erwartungsgemäß schließen, daß die Anlagerung des Borans nur an dem Stickstoff-Atom erfolgt, dessen freies Elektronenpaar nicht zur Aufrechterhaltung des  $6\pi$ -Elektronensystems benötigt wird. Da mit der Addition eine Hochfeldverschiebung des  $^{14}$ N-NMR-Signals verbunden ist, kann man diese als Zuordnungskriterium in Diazolen, Triazolen und Tetrazolen heranziehen, falls dies erforderlich sein sollte. In vielen Fällen genügt jedoch bereits das Zuordnungskriterium von Witanowski et al.  $^{19}$ ), wonach  $\delta^{14}$ N linear von der  $\pi$ -Elektronendichte abhängig ist und ein N-Atom vom Typ A daher bei höherem Feld zur Resonanz kommt als Stickstoff vom Typ B (Formel 103).

Imidazol, Pyrazol und Triazol liefern allerdings nur ein einziges <sup>14</sup>N-NMR-Signal <sup>19</sup>), da auf Grund von Wasserstoffbrücken und H-Übertragung im Mittel alle N-Atome gleichwertig werden. Halbhöhenbreiten und  $\delta^{14}$ N-Werte sprechen daher stark auf Lösungsmittel an (vgl. Tab. 4). Aus den Daten dieser Tabelle geht auch hervor, daß mit zunehmendem +I-Effekt

<sup>31)</sup> Beim Versuch, Acridin-Boran aus den Komponenten in THF darzustellen, erhielten wir ein gelbes, festes Produkt der korrekten Zusammensetzung mit δ11B = -43 ppm (breit, unaufgelöst). Ein 14N-NMR-Signal konnten wir wegen zu geringer Löslichkeit nicht beobachten. Das 11B-Signal legt ein Produkt vom Aminoborantyp, das durch Hydroborierung entstanden sein kann, nahe.

<sup>32)</sup> Auch von 2,6-Dimethylpyridin und Acridin konnten wir keine B(CH<sub>3</sub>)<sub>3</sub>- und B(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>- Addukte darstellen.

des Substituenten am Typ-A-Stickstoff dieser schlechter abgeschirmt wird, während der Typ-B-Stickstoff eine Hochfeldverschiebung erfährt.

Für das N-Trimethylsilylderivat des Imidazols (33) wird nur ein einziges <sup>14</sup>N-NMR-Signal beobachtet, für N-(Trimethylsilyl)pyrazol (36) und 1-Trimethylsilyl-1,2,4-triazol (39) sind zwei <sup>14</sup>N-NMR-Signale zu erkennen. Wir führen dies auf eine starke Beteiligung der Grenzstruktur II am Grundzustand zurück; eine rasche Wanderung der Trimethylsilylgruppe schließen wir auf Grund der Protonenresonanzspektren aus. Den Einfluß der Heteroatome im Ring haben bereits Witanowski et al. ausführlich diskutiert <sup>19</sup>).

Die Addition von  $H^+$  oder  $CH_3^+$  an die Azole führt zu kleineren Hochfeldverschiebungen als bei Azinen. Da die positive Ladung von beiden Stickstoff-Atomen übernommen (IV-V) werden kann, ist diese Beobachtung leicht zu erklären.

Die BH<sub>3</sub>-Anlagerung an die untersuchten Imidazole (60, 63, 66, 69, 72), Pyrazole<sup>33)</sup> (75, 77, 79) und Triazole<sup>35)</sup> liefert fast gleiche  $\Delta^{11}$ B-Werte, während die zugehörigen Abschirmungsgewinne  $\Delta^{14}N$  für die Imidazolderivate (50-60 ppm) geringer als für Pyrazolderivate (70-80 ppm) sind. Jedoch ist  $\Delta^{11}$ B für die Fünfringsysteme größer als für die Sechsringheterocyclen,  $\Delta^{14}N$  hingegen kleiner. Da Imidazole und Pyrazole recht unterschiedliche Basizität besitzen, kann man den gleichartigen und praktisch gleich hohen Abschirmungszuwachs  $\Delta^{11}$ B nicht unmittelbar mit der Basizität koppeln. Entscheidend ist offenbar die Ladungsdelokalisierung, die es gestattet, mehr Ladung auf das B-Atom zu übertragen (Grenzstruktur VII), Konsequenterweise sind daher auch die  $\Delta^{14}$ N-Werte kleiner als bei den Azinen. Derselbe Trend zeichnet sich auch bei den Trimethylboran- und Triäthylboran-Verbindungen der Imidazole (61, 62, 64, 65, 67, 68, 70, 71, 73, 74), Pyrazole (76, 78) und Triazole (81) ab. Der Stickstoff vom Typ A erfährt meist einen geringen Abschirmungsverlust, der Addukt-Stickstoff einen Abschirmungsgewinn, der aber bei den Pyrazol-Addukten sehr viel kleiner als bei den Imidazolderivaten ist, eine Folge der unmittelbaren Nachbarschaft eines elektronegativen Elements.

Nach Untersuchungen von Saito<sup>21)</sup> erfolgt die Protonierung von 1-Methyl-1,2,4-triazol am 4-N-Atom. An diesem Stickstoff lagert sich auch Trimethylboran (81) an. Die Addition eines zweiten mols B(CH<sub>3</sub>)<sub>3</sub> an den 2-Stickstoff beobachteten wir nicht. Seine Basizität wird durch die Addition von 1 mol BR<sub>3</sub> und Delokalisierung der positiven Ladung im Ring offenbar beträchtlich herabgesetzt.

<sup>33)</sup> Erwärmen von N-(Trimethylsilyl)pyrazol-Boran (79) führt unter (CH<sub>3</sub>)<sub>3</sub>SiH-Abspaltung quantitativ zum Pyrazabol<sup>34</sup>) (82).

<sup>34)</sup> S. Trofimenko, J. Amer. Chem. Soc. 88, 1899 (1966); 89, 3165 (1967).

<sup>35)</sup> Umsetzungen von 1,2,4-Triazol mit BH3 im Molverhältnis 1:1 und 1:2 in Tetrahydrofuran ergaben nur unlösliche Produkte.

Die  $\delta^{14}$ N-Werte des BH<sub>3</sub>- und B(CH<sub>3</sub>)<sub>3</sub>-Addukts des Isothiazols (82, 83) belegen die Anlagerung der Lewis-Säure an das Stickstoff-Atom. Die  $\Delta^{11}$ B-Daten weisen das Isothiazol als schlechteren Donor im Vergleich zu den untersuchten Azolen aus<sup>36</sup>).

Wir danken der Deutschen Forschungsgemeinschaft für eine Sachbeihilfe, dem Fonds der Chemischen Industrie und der Budischen Anilin- & Soda-Fabrik AG für unbürokratische finanzielle Unterstützung, Fräulein R. Dietrich für einsatzfreudige Mitarbeit bei den präparativen sowie Frau L. Moser und Herrn K. Schönauer für elementaranalytische Arbeiten.

### **Experimenteller Teil**

Die <sup>11</sup>B- und <sup>14</sup>N-Kernresonanzmessungen führten wir mit einem Varian-HA-100-Kernresonanzspektrometer durch. Alle in dieser Arbeit angegebenen chemischen Verschiebungen beziehen sich bei  $\delta^{11}$ B auf BF<sub>3</sub>·O(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub> extern und bei  $\delta^{14}$ N auf eine gesättigte wäßr. NaNO<sub>3</sub>-Lösung (extern). Die Spektrenauswertung erfolgte nach der Seitenbandtechnik.

Die untersuchten aliphatischen Amine und ein Teil der N-Heterocyclen waren Handelsprodukte. Sie wurden nach fraktionierter Destillation, Trocknen und nach NMR-spektroskopischer Reinheitskontrolle eingesetzt. Isothiazol stellte Herr Dr. J. C. Weis zur Verfügung. N-Methylpyrazol<sup>40)</sup> und 1-Methyl-1,2,4-triazol<sup>41)</sup> erhielten wir nach Literaturvorschriften, desgleichen die Trimethylsilylazole<sup>42)</sup>. Trimethylboran<sup>43)</sup>, Triäthylboran<sup>44)</sup> und BH<sub>3</sub> in Tetrahydrofuran<sup>45)</sup> bereiteten wir nach bewährten Methoden. B(CH<sub>3</sub>)<sub>3</sub> bewahrten wir als Isopropylamin-Addukt auf und setzten daraus in einer Vakuum-Apparatur mit 2 N HCl B(CH<sub>3</sub>)<sub>3</sub> frei (Ausb. 99–99.5%).

Alle Reaktionen mit den Boranen wurden unter Stickstoff oder in einer Vakuum-Apparatur durchgeführt. Dazu wurde zu der freigesetzten  $B(CH_3)_3$ -Menge ein Äquivalent des Amins hinzukondensiert und das Addukt nach völligem Abreagieren isoliert. Durch Zutropfen von  $B(C_2H_5)_3$  zum Amin in Äther entstanden die Triäthylboran-Addukte. In gleicher Weise erhielten wir die meisten  $BH_3$ -Additionsverbindungen durch Zutropfen einer frisch dargestellten  $BH_3$ -THF-Lösung zu einer Äther- oder Benzollösung der Stickstoff-Verbindung. Die Reinheitskontrolle erfolgte bei allen Verbindungen elementaranalytisch (ein relativ großer Teil der Verbindungen verbrannte auch bei Zusatz von  $V_2O_5$  oder  $WO_3$  nur langsam, so daß besonders bei C und N relativ große Abweichungen von der berechneten Zusammensetzung resultierten) und  $^1H$ -NMR-spektroskopisch.  $^{11}B$ -NMR-Spektren zeigten keine anderen Spezies außer den Addukten an.

Von N-Verbindungen, die keine isolierbaren Boran-Additionsverbindungen lieferten, nahmen wir <sup>11</sup>B- und <sup>14</sup>N-NMR-Spektren nach Zumischen der berechneten Boran-Menge auf. Alle relevanten Daten über die Addukte sind in Tab. 7 aufgeführt.

<sup>36)</sup> In den Pentacarbonyl(isothiazol)metall(0)-Verbindungen des Chroms, Molybdäns und Wolframs<sup>37)</sup> liegt das <sup>14</sup>N-NMR-Signal bei sehr viel höherem Feld als bei den Boran-Addukten. Dies belegt einen Anisotropie-Effekt des Übergangsmetalls, wie er an anderer Stelle diskutiert wird<sup>38</sup>, <sup>18</sup>, <sup>39</sup>).

<sup>37)</sup> J. C. Weis, Dissertation, Univ. München 1972.

<sup>38)</sup> M. Witanowski und G. A. Welb, Annu. Rev. NMR-Spectrosc. 5 A, 395 (1972).

<sup>39)</sup> R. Bramley, B. N. Figgis und R. S. Nyholm, J. Chem. Soc. A 1967, 861; B. M. Fung und S. C. Wei, J. Magn. Resonance 3, 1 (1970).

<sup>40)</sup> G. Dedichen, Ber. Deut. Chem. Ges. 39, 1831 (1906).

<sup>41)</sup> M. R. Atkins und J. B. Polya, J. Chem. Soc. 1954, 141.

<sup>42)</sup> L. Birkofer, P. Richter und A. Ritter, Chem. Ber. 93, 2804 (1960).

<sup>43)</sup> H. C. Brown, J. Amer. Chem. Soc. 67, 374 (1945).

<sup>44)</sup> R. Köster, Liebigs Ann. Chem. 618, 31 (1958).

<sup>45)</sup> H. C. Brown und P. A. Tierney, J. Amer. Chem. Soc. 80, 1552 (1958).

Tab. 7. Analytische Daten von Boran-Addukten einiger Azine und Azole

|    | Summenformel<br>(MolMasse)                                             | Schmp.<br>(°C) | C H N                                            |
|----|------------------------------------------------------------------------|----------------|--------------------------------------------------|
| 48 | C <sub>16</sub> H <sub>34</sub> B <sub>2</sub> N <sub>2</sub> (276.08) | _              | Ber. 69.60 12.36 10.16<br>Gef. 66.37 11.59 12.04 |
| 49 | $C_{10}H_{19}BN_2$ (178.09)                                            | _              | Ber. 66.50 10.67 15.72<br>Gef. 66.50 10.58 15.79 |
| 50 | C <sub>7</sub> H <sub>12</sub> BN<br>(120.98)                          | 120            | Ber. 68.40 9.75 11.40<br>Gef. 66.87 10.20 11.41  |
| 54 | C <sub>10</sub> H <sub>12</sub> BN<br>(157.01)                         | 88 92          | Ber. 76.50 7.71 8.92<br>Gef. 72.92 7.39 8.44     |
| 56 | C <sub>12</sub> H <sub>16</sub> BN<br>(195.08)                         | 84 - 85        | Ber. 75.65 8.65 7.55<br>Gef. 74.92 7.94 7.50     |
| 58 | C <sub>10</sub> H <sub>12</sub> BN<br>(157.01)                         | 123-125        | Ber. 76.50 7.71 8.92<br>Gef. 75.00 7.68 8.52     |
| 60 | C <sub>3</sub> H <sub>7</sub> BN <sub>2</sub><br>(81.91)               | _              | Ber. 43.96 8.54 34.18<br>Gef. 40.38 7.86 30.79   |
| 61 | C <sub>6</sub> H <sub>13</sub> BN <sub>2</sub><br>(129.95)             | 39-42          | Ber. 55.25 10.04 21.55<br>Gef. 55.77 9.56 23.29  |
| 62 | C <sub>9</sub> H <sub>19</sub> BN <sub>2</sub><br>(160.96)             | _              | Ber. 59.60 11.87 17.40<br>Gef. 62.57 12.18 15.61 |
| 63 | C <sub>4</sub> H <sub>9</sub> BN <sub>2</sub><br>(95.93)               |                | Ber. 50.11 9.38 29.18<br>Gef. 50.36 9.56 26.32   |
| 64 | C <sub>7</sub> H <sub>15</sub> BN <sub>2</sub><br>(137.97)             | 71 – 73        | Ber. 60.80 10.93 20.24<br>Gef. 59.63 10.61 19.55 |
| 66 | C <sub>5</sub> H <sub>11</sub> BN <sub>2</sub><br>(109.95)             | _              | Ber. 54.50 10.02 25.45<br>Gef. 54.37 10.15 24.95 |
| 67 | C <sub>8</sub> H <sub>17</sub> BN <sub>2</sub><br>(152.00)             | 30             | Ber. 63.15 11.25 18.42                           |
| 69 | C <sub>5</sub> H <sub>11</sub> BN <sub>2</sub><br>(109.95)             | 71 73          | Gef. 63.19 11.03 19.55<br>Ber. 54.50 10.02 25.45 |
| 70 | $C_8H_{17}BN_2$                                                        | _              | Gef. 50.19 9.71 24.16  Ber. 63.15 11.25 18.42    |
| 71 | (152.00)<br>C <sub>11</sub> H <sub>23</sub> BN <sub>2</sub>            | _              | Gef. 59.94 10.25 21.00<br>Ber. 69.31 12.21 14.82 |
| 72 | (189.01)<br>C <sub>6</sub> H <sub>15</sub> BN <sub>2</sub> Si          | _              | Gef. 66.73 11.44 14.77<br>Ber. 46.72 9.80 18.17  |
| 74 | (154.08)<br>C <sub>12</sub> H <sub>27</sub> BN <sub>2</sub> Si         | -              | Gef. 41.64 8.24 20.60<br>Ber. 62.22 11.79 12.02  |
| 77 | (233.14)<br>C <sub>4</sub> H <sub>9</sub> BN <sub>2</sub>              | • •            | Gef. 60.52 11.56 12.31<br>Ber. 50.11 9.38 29.18  |
| 78 | (95.93)<br>C <sub>7</sub> H <sub>15</sub> BN <sub>2</sub>              |                | Gef. 50.77 9.74 28.74<br>Ber. 60.80 10.93 20.24  |
| 79 | (137.97)<br>C <sub>6</sub> H <sub>15</sub> BN <sub>2</sub> Si          |                | Gef. 59.49 9.88 21.17<br>Ber. 46.65 9.80 18.18   |
| 81 | (154.08)<br>C <sub>6</sub> H <sub>14</sub> BN <sub>3</sub>             | 30             | Gef. 41.26 7.79 20.54<br>Ber. 51.80 10.01 30.20  |
| 83 | (139.01)<br>C <sub>6</sub> H <sub>12</sub> BNS                         | _              | Gef. 51.75 10.46 31.68<br>Ber. 51.08 8.58 9.94   |